

Integrated Carbon Sequestration Project 2-day training course – 1st and 2nd of April 2019 Khartoum – Sudan

Introduction to forest carbon inventory, GHG reporting and MRV

	Monday, 1 st of April	Tuesday, 2 nd of April
	INTRODUCTION : presentation of participants and their expectations; presentation of objectives and agenda	
am	Presentation #1: CONTEXT – United Nations Framework Convention on Climate Change (UNFCCC) context and requirements, and introduction to Intergovernmental Panel on Climate Change (IPCC) guidelines	Presentation #5: ESTIMATING GHG - UNFCCC context and requirements, and introduction to IPCC guidelines
	Presentation #2: MONITORING OF LAND USE CHANGE - Monitoring Activity Data (AD) for forest-related Land Use Change (LUC)	Presentation #6: ESTIMATING UNCERTAINTIES - Identifying and minimizing uncertainties (lack of precision and/or accuracy)
	Quiz	Quiz
	Lunch break	Lunch break
	Presentation #3: MONITORING OF DEGRADATION - Monitoring Activity Data (AD) for forests remaining forests Presentation #4: ESTIMATING EMISSION FACTORS - Estimating Emission Factors (EFs) for Land Use, Land Use Change, and Forestry (LULUCF) activities	Presentation #7: REPORTING OF GHG - Reporting LULUCF performance using IPCC 2003 Good Practice Guidance for LULUCF and 2006 Agriculture, Forestry and Other Land use (AFOLU) Guidelines
pm	Quiz	Quiz
		DEBATE : Way forward to design and implement a LULUCF inventory in Sudan?
		CLOSING : Satisfaction questionnaire, evaluation of achievement of participants' expectations

ACRONYMS

AD	Activity Data
AFOLU	Agriculture, Forestry, and Other Land Use
AGB	Above Ground Biomass
BGB	Below Ground Biomass
BUR	Biennial Update Report
С	Carbon
CO ₂	Carbon Dioxide
COP	Conference of the Parties of the UNFCCC
DBH	Diameter at Breast Height
EF	Emission Factor
ELE	Extracted Log Emissions
FAO	Food and Agriculture Organization (United Nations)
FCPF	Forest Carbon Partner Facility (World Bank)
FR(E)L	Forest Reference (Emission) Level
GFOI	Global Forest Observation Initiative
GHG	Greenhouse Gas
GOFC-GOLD	Global Observation of Forest Cover - Global Observation of Land Dynamics
GPG	Good Practice Guidance
ICA	International Consultation and Analysis
IPCC	Intergovernmental Panel of experts on Climate Change
JRC	Joint Research Centre (European Commission)
KP	Kyoto Protocol
LANDSAT	Land Satellite (US satellite series)
LDF	Logging Damage Factor
LIF	Logging Infrastructure Factor
LULUCF	Land Use, Land Use Change, and Forestry
MRV	Measuring, Reporting and Verification

NDFI	Normalized Differencing Fraction Index
NFI	National Forest Inventory
NFMS	National Forest Monitoring System
NPV	Non-Photosynthetic Vegetation
REDD+	Reducing Emissions from Deforestation and forest Degradation; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries
RSS	Remote Sensing Survey
SBSTA	Subsidiary Body for Scientific and Technological Advice of the UNFCCC
SOP	Standard Operation Procedure
UNFCCC	United Nations Framework Convention on Climate Change

CREDITS

Elements compiled in the training manual are sourced from diverse SalvaTerra's studies, but also from the "*MRV REDD*+ *Training Materials*" produced by GOFC-GOLD, Wageningen University, World Bank FCPF (and licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License).

These last training materials were produced by the following developers: Suvi Monni (Benviroc), Frédéric Achard, Giacomo Grassi, Andreas Langner, Jukka Miettinen, Yosio Shimabukuro (European Commission, Joint Research Centre), Carlos Souza (Imazon), Luigi Boschetti (University of Idaho), Arturo Balderas Torres, Margaret Skutsch (Universidad Nacional Autónoma de Mexico), Veronique De Sy, Martin Herold, Brice Mora, Erika Romijn (Wageningen University), Sandra Brown, Felipe Casarim, Lara Murray (Winrock International).

SUMMARY

P1 - CONTEXT	1
P2 – MONITORING OF LAND USE CHANGE (LUC)	10
P3 – MONIORING OF DEGRADATION	19
P4 – ESTIMATING EMISSION FACTORS (EFs)	28
P5 – ESTIMATING GREENHOUSE GASES (GHG) EMISSIONS/REMOVALS	40
P6 – ESTIMATING UNCERTAINTIES	46
P7 – REPORTING GHG EMISSIONS/REMOVALS	58

Page

CONTEXT

1 CONTEXT

UNFCCC context and requirements, and introduction to IPCC guidelines

After the course the participants should be able to:

- Understand the UNFCCC context and requirements for monitoring and reporting of REDD+ activities
- Explain fundamental concepts of the IPCC guidelines for national GHG inventories and for reporting on forest-related activities

```
IPCC Intergovernmental Panel on Climate Change
```

```
        REDD+
        Reducing Emissions from Deforestation and forest Degradation; and the role of conservation,
sustainable management of forests and enhancement of forest carbon stocks in developing countries

        UNFCCC
        United Nations Framework Convention on Climate Change
```

1. Introduction to UNFCCC REDD+ process

- 2. UNFCCC context and requirements for measurement and reporting of REDD+ activities
- 3. IPCC guidelines for national GHG inventories and reporting for forest land
 - a. Reporting principles
 - b. Estimation of GHG emissions/removals

2

4

Tropical forests and climate change

Tropical forests store significant amounts of carbon in above- and belowground biomass, dead wood, litter, and soil.

Deforestation impacts global GHG emissions by massively releasing carbon dioxide (CO_2) to the atmosphere, as well as CH_4 and N_2O (biomass burning, soil oxidation, etc.)

GHG emissions by economic sectors in 2010

AFOLU: Agriculture, Forestry and Other Land Use

Indirect GHG emissions: electricity and heat production are attributed to sectors of final energy use

GHG Greenhouse Gas

Deforestation & afforestation, 2000–2005

Mitigation of CC and forests in DCs: REDD+

UNFCCC, Cancun Agreements on REDD+ (Dec.1/CP16, 2010) "Policy approaches and positive incentives on issues relating to Reducing Emissions from Deforestation and forest Degradation in DCs; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in DCs"

REDD

- Reducing emissions from **deforestation**
- Reducing emissions from forest degradation
- Conservation of forest carbon stocks
- Sustainable management of forest
- Enhancement of forest carbon stocks ICSP

Milestones of the RFDD+ mechanism CONTEXT 2005 **COP11 Montreal** RED discussions started. Papua New Guinea and 1. Introduction to UNFCCC REDD+ process Costa Rica asked for new agenda item: "Reducing emissions from deforestation in developing countries: Approaches to stimulate action." 2. UNFCCC context and requirements for 2007 measurement and reporting of REDD+ activities **COP13 Bali** Bali Action Plan was provided, in which the RED concept was broadened to REDD+ (pressure of China, India, and Congo Basin). 3. IPCC guidelines for national GHG inventories and 2009 **COP15 Copenhagen** Methodological guidance for REDD+ activities reporting for forest land was developed. 2010 **COP16 Cancun** Cancun Agreements were established, including policy approaches and positive incentives on issues relating to REDD+. 2013 **COP19 Warsaw** REDD+ package was developed, including modalities for establishing NFMS, MRV, FR(E)L and addressing safeguards 9 ER(E)L : Forest Reference (Emission) Levels 10 MRV: Measuring, Reporting, and Verification NFMS : National Forest Monitoring Systems The Paris Agreement (1/CP.21, 2015) (1/2) The Paris Agreement (1/CP.21, 2015) (2/2)

- A new legally-binding framework for an internationally coordinated effort to tackle climate change that replaces the Kyoto Protocol.
- Overall goal: to hold increase in global average temperature well below 2°C on pre-industrial levels and to reach global peaking as soon as possible.
- Countries have to formulate their adaptation and mitigation measures in Nationally Determined Contributions (NDCs), to be updated every five years.
- REDD+ action and support need to be included in the NDCs.

- Parties have to provide information to track progress made in implementing their NDCs and keep track of their emissions in National Inventory Reports (NIR)
- Information submitted will undergo a technical expert review.
- Global stocktaking takes place every five years → Is collective mitigation action (as expressed in NDCs) consistent with meeting the 1,5°C / 2°C target?

Specificities for REDD+

- Parties should collectively aim to slow, halt, and reverse forest cover loss and carbon loss, thereby addressing the five REDD+ activities.
- Participation is voluntary and in accordance with respective capacities and national circumstances.
- Performance-based payments are based on the difference between actual forest emissions and a FR(E)L, which requires:
 - · Methodologies to estimate actual emissions and removals
 - Establishment of a FR(E)L with the same coverage of emissions and removals
- REDD+ results-based actions should be Measured, Reported, and Verified (MRV)

13

4

15

UNFCCC guidance on REDD+ activities

Developing country parties are requested to develop:

- A National Strategy or Action Plan (including ways to address drivers of deforestation and forest degradation and ensuring safeguards)
- A robust and transparent National Forest Monitoring System (NFMS)
- A national FR(E)L, based on data provided by the NFMS
- A System for providing Information on the Safeguards (SIS), respecting the role of local people and ecosystems

14

REDD+ phased approach

Countries may follow a phased approach for implementing REDD+ in steps, which allows them to gradually build capacities and acquire data

			MRV activities	
Phase 1 Re	eadiness	National strategy or action plan formulation, development of policies and measures and capacity building	Capacity-development needs; Roadmap, including for MRV	
Phase 2 Tr im ar bu	ransition, nplementation, nd capacity uilding	Implementation of national policies and measures and national strategies or action plans (further capacity building); technology development and transfer and results-based demonstration activities	Demonstration activities; Design of the MRV system, pilot test and upscaling	
Phase 3 Fu	ull nplementation	Implementation of national policies and measures on the whole national territory; results-based actions that should be fully measured, reported, and verified	national performance monitoring system; Fully operational MRV system to report REDD+ mitigation performance in CO ₂ eq	

Modalities for FR(E)L (12/II CP.17 and Annex)

- Benchmarks for assessing each country's performance. Fr(E)L are:
 - Expressed in **tCO₂eq** per year
 - **Consistent** with anthropogenic forest-related GHG emissions and removals from the **GHG inventories**
- They should be transparent, taking into account historical data and adjusting for national circumstances.
- They may be **improved** over time, incorporating better data, improved methodologies, and/or additional carbon pools.
- Submission of a FR(E)L is subject to a technical assessment.

Results (reduced emissions and/or increased removals) are expressed in **tCO_{2eq}** per year, consistent with the FR(E)L 1. Introduction to UNFCCC REDD+ process 2. UNFCCC context and requirements for measurement Data and methodologies may be improved over time, while maintaining consistency with FR(E)L. and reporting of REDD+ activities 3. IPCC guidelines for national GHG inventories and Data and information should be provided through **Biennial** reporting for forest land Update Reports (BURs) by Parties that include: • Summary information on assessed FR(E)Ls a. Reporting principles • Results in CO_{2eq} per year consistent with FR(E)L • Methods used for establishing FR(E)L and results (to be consistent) Land Use, Land-Use Change, and Forestry (LULUCF) experts will perform a **technical analysis** of the submitted results 17 18

Reporting of GHG emissions and/or removals

Modalities for MRV of REDD+ (14/CP.19)

- Within UNFCCC REDD+ context, DCs should:
 - Identify Land Use, Land Use Change, and Forestry (LULUCF) activities and related drivers of deforestation / forest degradation
 - Use a combination of **remote sensing** and **groundbased forest carbon inventory** approaches for estimating anthropogenic forest-related GHG emissions and removals
- Estimating emissions / removals should be done using the IPCC Good Practice Guidance (GPG) and Guidelines

IPCC Good Practice Guidance (GPG) & Guidelines

CONTEXT

Most relevant is **2003 IPCC GPG** (Good Practice Guidance for LULUCF), which refers to 1996 IPCC Guidelines.

Countries may wish to refer to the updates in the **2006 IPCC GL** (Guidelines for AFOLU)

The **2014 GFOI MGD** (Methods and Guidance Document) provides systematic linkage between IPCC GPG and GL, and each of the REDD+ activities. Countries may also wish to refer to this.

5

The five IPCC reporting principles

- Consistency Same definitions and methodologies used over time
- Comparability Standard methodologies and formats, provided by IPCC and agreed within UNFCCC
- Transparency Assumptions and methodologies clearly explained and appropriately documented
- Accuracy Estimates neither over- nor underestimated, uncertainties reduced as far as is practical
- Completeness Estimates include all agreed categories, gases, and pools for all relevant geographical areas

NB: "**Conservativeness**" to complement the last principle → possible to omit a category/gas/pool if only it does not lead to an over- or underestimation **benefiting** to the reporting Party ²¹

Forest definitions

- 6 IPCC Categories : Forest land, Cropland, Grassland, Wetland, Settlements, Other.
- A Party may use its own definition for forest land. Need to be consistent: UNFCCC asks for an explanation if the forest definition for REDD+ differs from the one used for other international reporting (e.g. FAO FRA).

• FAO forest definition:

- Minimum forest area: 0.5 ha
- Minimum trees **height**: 5 meters
- Minimum tree crown cover: 10%
- Forest use should be the **predominant land use** in the area

• **Considerations** for establishing forest definition:

- Thresholds of minimum area / crown cover / tree height
- Including/excluding **plantation forests** (forests or crops?) 22
- Define **subcategories** for forest

CONTEXT

- 1. Introduction to UNFCCC REDD+ process
- 2. UNFCCC context and requirements for measurement and reporting of REDD+ activities
- **3. IPCC guidelines for national GHG inventories and** reporting for forest land
 - a. Reporting principles
 - **b.** Estimation of GHG emissions/removals

Basic formula

GHG emissions/removals, expressed in tCO_{2eq} = **Activity Data (AD)**, expressed in ha (more rarely in other units, e.g. m³ for biomass burning) X **Emission Factor (EF)**, expressed in

 tCO_{2eq}/ha (more rarely in other units, e.g. tCO_{2eq}/m^3

Example: GHG emissions due to deforestation in various forest types

$$C_{gr_em} = \left(\sum_{i=1}^{m} A_{loss(i)} \cdot C_{loss(i)}\right)$$

 C_{gr_em} = Gross carbon emissions A_{loss} = AD = Area of deforestation (ha) C_{loss} = EF = Change in carbon stock per unit area (t/ha) i = Forest type, varying from 1 to m

AD: Approaches and accuracy/precision

3 **approaches** for estimating AD, with increasing accuracy and

Approach 1	Approach 2	Approach 3
Total area for each land use category, but no information on conversions	Same as 1 + tracking of conversions between land-use categories on non- spatially explicit basis	Same as 1 + tracking of conversions between land-use categories on spatially explicit basis
e.g. Area of forest known in year n and year n-5. Nature (Cropland? Grassland? Etc.) and location of deforestation unknown	e.g. Area of forest known in year n and year n-5. Nature of deforestation known. Location of deforestation unknown	e.g. Area of forest known in year n and year n-5. Nature and location of deforestation known.

EF: Estimating EFs for forest-related GHGs

- Identification of different forest sub-categories, with different mean carbon stocks
- Assessment of 5 carbon pools for each forest sub-category:
 - Aboveground biomass (AGB) trees and shrubs
 - Belowground biomass (BGB) root biomass
 - **Dead wood** logs and fallen branches
 - Litter fine woody debris, dead leaves and humus
 - Soil organic matter carbon that has been incorporated into the mineral soil

EF: methods to estimate vegetation biomass

Biomass is defined as mass per unit area of above- or belowground live plant material. Nearly **half** (47%) of the biomass is carbon.

- 4 main methods to estimate biomass:
- In situ destructive direct measurement
- *In situ* **non-destructive estimation** (using allometric equations or conversion factors)
- **Inference** from **remote sensing** (can be problems with saturation)
- **Models** calibrated to the ecosystem under consideration

EF: Tier and accuracy/precision

3 tiers for estimating EF, with increasing accuracy and precision

Tier 1	Tier 2	Tier 3
IPCC default factors (i.e., biomass in different forest biomes, carbon fraction, etc.)	Country-specific data for key EFs (e.g., from field inventories, permanent plots)	Data produced through (i) detailed national inventory of key C stocks and their repeated measurements through time, (ii) modeling, tailored to national circumstances
		29

In summary

- 1. Mitigation actions in the LULUCF sector in DCs shall follow the UNFCCC **REDD+ COP Decisions**.
- 2. Following COP Decisions require use of **IPCC 2003 GPG and 2006 Guidelines.**
- 3. Countries can measure and report on the five REDD+ activities.
- 4. Significant carbon pools and activities should not be omitted.
- 5. National forest monitoring systems (**NFMS**) are needed for Measuring, Reporting, and Verifying (**MRV**) REDD+ activities.

30

References

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L. et al., 2016. An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22, pp. 1406–1420.

FAO & JRC, 2012. *Global forest land-use change 1990–2005*, by E.J. Lindquist, R. D'Annunzio, A. Gerrand, K. MacDicken, F. Achard, R. Beuchle, A. Brink, H.D. Eva, P. Mayaux, J. San-Miguel-Ayanz & H-J. Stibig. FAO Forestry Paper No. 169. Food and Agriculture Organization of the United Nations and European Commission Joint Research Centre. Rome, Italy. Available at: http://www.fao.org/docrep/017/i3110e/i3110e.pdf

GFOI (Global Forest Observations Initiative). 2014. *Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative*. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.

 Hewson, J., M. Steininger, and S. Pesmajoglou, eds. 2013. REDD+ Measurement, Reporting and Verification (MRV)

 Manual. USAID-supported Forest Carbon, Markets and Communities Program. Washington, DC, USA.

 http://www.fcmcglobal.org/documents/mrvmanual/MRV_Manual.pdf.
 31

IPCC (Intergovernmental Panel on Climate Change). 1996. *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*. Geneva, Switzerland: IPCC. http://www.ipcc-nggip.iges.or.jp/public/gl/invs4.html.

IPCC. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. (Often IPCC GPG.) Geneva, Switzerland: IPCC. <u>http://www.ipcc-ngaip.iges.or.jp/public/gp/english/</u>.

IPCC, 2003. *2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry*, Prepared by the National Greenhouse Gas Inventories Programme, Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/apglulucf/gpglulucf.html</u> (Often referred to as IPCC GPG)

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html</u> (Often referred to as IPCC AFOLU GL)

IPCC. 2014. "Summary for Policy Makers." In *Climate Change 2014: Mitigation of Climate Change; Working Group III Contribution to the Fifth Assessment Report of the IPCC*, edited by O. Edenhafer, R Pichs-Madruga, Y. Sokona, et al. Cambridge University Press. http://www.ipcc.ch/report/ar5/; http://mitigation2014.org/report/summary-forpolicy-makers.

Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J.E.S., Hall, R.J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M. and Wegmüller, U., 2015. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 168, pp. 316-334.

Streck, C., 2015. The Paris Agreement, Summary. Climate Focus Briefing Note

http://www.climatefocus.com/sites/default/files/20151228%20COP%2021%20briefing%20FIN.pdf

UNFCCC, 2016. Decision 1. Adoption of the Paris Agreement. Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. FCCC/CP/2015/10/Add.1.

http://unfccc.int/meetings/paris nov 2015/session/9057/php/view/decisions.php#c

UNFCCC. 2013. CP.19 Decisions:

- Decision 11. Modalities for national forest-monitoring systems. <u>http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=31</u>
- Decision 12. The timing and the frequency of presentations of the summary of information on how all the safeguards referred to in decision 1/CP.16, appendix I, are being addressed and respected. http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=33
- Decision 13. Guidelines and procedures for the technical assessment of submissions from Parties on proposed forest reference emission levels and/or forest reference levels. http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=34
- Decision 14. Modalities for measuring, reporting and verifying. http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=39
- Decision 15. Addressing the drivers of deforestation and forest degradation. <u>http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=43</u>

UNFCCC. 2011. Decision 12/CP.17. Guidance on systems for providing information on how safeguards are addressed and respected and modalities relating to forest reference emission levels and forest reference levels as referred to in decision 1/CP.16 http://unfccc.int/resource/docs/2011/cop17/eng/09a02.pdf#page=16

UNFCCC. 2011. Decision 2/CP.17. Outcome of the work of the ad hoc working group on long-term cooperative action under the convention. http://unfccc.int/resource/docs/2011/cop17/eng/09a01.pdf#page=4

UNFCCC. 2010. Decision 1/CP.16. The Cancun Agreements http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2

UNFCCC. 2009. Decision 4/CP.15. Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries. http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf#page=11

UNFCCC. 2007. Decision 2/CP.13. Reducing emissions from deforestation in developing countries: approaches to stimulate action. http://unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf#page=8

2 MONITORING OF LUC

Monitoring Activity Data (AD) for forestrelated Land Use Change (LUC)

After the course the participants should be able to differentiate between different (remote sensing) approaches to monitor changes in forest areas

forest/agriculture mosaic, orange = agriculture & fallow.

2 AD & MONITORING OF LUC

1. Introduction

- 2. Selection of a monitoring approach
- 3. Image classification and analysis
- 4. Accuracy assessment
- 5. Limitations to using satellite data

2

IPCC requirements

- IPCC methodologies aim for complete, accurate, transparent, consistent, and comparable reporting of GHG emissions and removals (5 IPCC reporting principles)
- 2 basic inputs with which to calculate GHG inventories:
 Activity Data (AD) and Emissions Factors (EFs).
- Estimating AD can be achieved using 2 mapping approaches:
- Sampling → analysis of LUC on discrete plots, and generalization to the entire region of interest. Data are not spatially explicit, unless additional information on land use dynamic are available
- Wall-to-wall → analysis of LUC on the entire region of interest
- For Activity Data, spatially explicit land conversion information is encouraged: Approach 3.

Use of satellite in monitoring tropical forests

- Fundamental requirement of National Forest Monitoring Systems are that they:
 - i. Measure changes throughout all forested area
 - ii. Use consistent methodologies at repeated intervals to obtain accurate results and
- The only practical solution to implement such monitoring systems in tropical countries, often with low accessibility to forest areas, is through interpretation of remotely sensed data supported by ground-based observations.

Issues affecting the choice of a monitoring approach

- **National circumstances**: existing definitions for forest, satellite images available at different dates, etc.
- **Methodological choices** : Sampling vs wall-to-wall coverage, Fully visual vs semi-automated interpretation, etc.
- Available resources: Hard- and software resources, human resources (and required training), etc.

2 AD & MONITORING OF LUC

1. Introduction

2. Selection of a monitoring approach

- 3. Image classification and analysis
- 4. Accuracy assessment
- 5. Limitations to using satellite data

6

Choices in terms of forest definition

- Annex I Parties (Developed Countries) use the Kyoto Protocol definition (for implementation of Art. 3.3 and 3.4):
 - Minimum forest area: 0.05 to 1 ha
 - Potential to reach a min height at maturity: 2 to 5 m
 - \bullet Minimum tree crown cover: 10 to 30 %

For Non-Annex 1 Parties (Developing Countries):

- FAO FRA are often based on a **default standard definition**: min. crown cover of 10%; min height of 5 m; min area of 0.5 ha; forest use should be predominant
- Under the **UNFCCC**, Countries can choose their **own forest definition** (as long as they clearly describe it and it remains consistent with existing ones).
- NB : remote sensing imagery allows **land cover** to be observed; field information is needed to derive **land use**

Designation of forest area

- Ideally, wall-to-wall assessments would be carried out to identify forested area according to UNFCCC forest definitions.
- Alternatively, in case of sampling assessments, existing forest maps for a relatively recent time could be used to identify the overall forest extent.

Important principles in identifying the forest area:

- □ The area should **include all forests** within the national boundaries
- A **consistent** forest area should be used for monitoring all forest changes during assessment period

11

Choices in terms of categories to be monitored

Basic → 2 categories = forest / non-forest (cropland, grassland, wetlands, settlements, others) → Allow for estimating GHG emissions from deforestation

- More complete → same as basic, but forest category detailed into sub-categories → Allow for estimating GHG emissions from deforestation and forest degradation
- Complete → 6 categories → Allow for estimating GHG emissions/removals from all possible LUC (in theory)

→ The more detailed the categories/sub-categories, the better in terms of completeness

Choices in terms of satellite images

Depend on size of the country, availability of cloud free images for repeated years, for different seasons (if deciduous forests), availability of funds to buy HR or VHR images, etc.), etc. NB : Sentinel-2 images are free and now widely used to monitor LULUCF.

Here below the most common optical sensors (NB: also exist radar sensor, LiDAR, drone, etc.)

-VGT -MODIS at-MERIS ni NPP - VIIRS sat TM, ETM+ and OLI -ASTER	~ 100 ha ~ 10-20 ha	Low or free	Consistent pan-tropical annual monitoring to identify large clearings and locate "hotspots" for further analysis.
at TM, ETM+ and OLI -ASTER			
WiFs or LISS III S HRCCD HRV AVNIR-2 nel-2 MSI (2015→)	0.5 - 5 ha	Landsat & CBERS are free; for others: <\$0.001/km ² for historical data \$0.02-0.5/km ² for recent data	Primary tool to map deforestation and estimate forest area change.
Eye OS Bird I photos	< 0.1 ha	High to very high \$2 -30 /km²	Validation of results from coarser resolution analysis, and training of algorithms.
	AVNIR-2 el-2 MSI (2015→) ye S S ird photos	AVNIR-2 el-2 MSI (2015→) sye S S ird photos	AVNIR-2 el-2 MSI (2015→) sye S Sird photos

Ex. Forest map in Brazil (30 m Landsat TM)

Landsat-5 TM image of 15 June 2005: 20 km x 20 km extract

Legend Tree cover Tree cover mosaic Other wooded land Other land cover

Forest cover map 10 km x 10km window size Centered at 12°S, 58°W

> Sources: USGS 2015; Eva, et al. 2012.

Choice for wall-to-wall vs sample coverage

- Wall-to-wall is a common approach, but sampling can be more cost-efficient for large countries and can produce more accurate estimates of activity data
- Sampling can be (i) Systematic (regular interval, e.g. every 10 km), (ii) Stratified (samples are distributed based on proxy variables derived from coarse resolution satellite data or by combining other geo-referenced or map

⁻Systematic sampling design

Source: GOFC-GOLD Sourcebook 2013, box 2.1.2.

2 AD & MONITORING OF LUC

- 1. Introduction
- 2. Selection of a monitoring approach

3. Image classification and analysis

- 4. Accuracy assessment
- 5. Limitations to using satellite data

14

3 main pre-processing steps for satellite data

- Geometric corrections: Needed to ensure that images in a time series overlay properly. Location error should be < 1 pixel. Baseline datasets (e.g. global land survey) can be used as alternative to ground control points or image-toimage registration
- Cloud and cloud shadow masking: Contamination by cloud/haze is frequent in tropical regions (e.g. Congo Basin). Use of automated or visual methods to ensure meaningfulness of image interpretation
- Radiometric corrections: Needed to guarantee having the same spectral values for same objects. Not needed for visual single scene interpretation but crucial for automated multitemporal analysis. Done by identifying a water body or dark object and calibrating other objects to the first

Geometric correction

Ex: use of GLS dataset for image-to-image co-registration. All Landsat data from USGS archive are available for free. These datasets can be used as baseline for image geo-registration.

17

Analyzing the satellite data

- The selection of the image interpretation method depends on available resources (images, software, RS/GIS experts). Whichever method is selected, the results should be repeatable by different analysts.
- Visual interpretation can be simple and robust, although it is time-consuming. A combination of automated methods (classification or segmentation) and visual interpretation can reduce the work load. Automated methods are generally preferable where possible because the interpretation is repeatable and efficient
- Even in a fully automated process, visual inspection of the result by an analyst familiar with the region should be carried out to ensure appropriate interpretation.
- NB: it is generally more difficult to identify forestation than deforestation. Forestation occurs gradually over a number of years while deforestation occurs more rapidly.

Visual delineation of land entities

- Visual delineation of land entities is a viable approach for forest-area monitoring, particularly if image analysis tools and experiences are limited.
- The visual delineation of land entities on printouts (used in former times) is not recommended; on screen delineation should be preferred as producing directly digital results.

Main analysis methods for MR images (~ 30 m)

Method for delineation	Method for class labeling	Practical minimum mapping unit	Principles for use	Advantages / limitations
Point interpretation (points sample)	Visual interpretation	< 0.1 ha	 multiple date preferable to single date interpretation On screen preferable to printouts interpretation 	 closest to classical forestry inventories very accurate although interpreter dependent no map of changes
Visual delineation (full image)	Visual interpretation	5 – 10 ha	 multiple date analysis preferable On screen digitizing preferable to delineation on printouts 	 easy to implement time consuming interpreter dependent
Pixel based classification	Supervised labeling (with training and correction phases)	<1 ha	 selection of common spectral training set from multiple dates / images preferable filtering needed to avoid noise 	- difficult to implement - training phase needed
	Unsupervised clustering + Visual labeling	<1 ha	 interdependent (multiple date) labeling preferable filtering needed to avoid noise 	 difficult to implement noisy effect without filtering
Object based segmentation	Supervised labeling (with training and correction phases)	1 - 5 ha	 multiple date segmentation preferable selection of common spectral training set from multiple dates / images preferable 	- more reproducible than visual delineation - training phase needed
	Unsupervised clustering + Visual labeling	1 - 5 ha	 multiple date segmentation preferable interdependent (multiple date) labeling of single date images preferable 	 more reproducible than visual delineation

Multidate image segmentation

Image segmentation = grouping pixels that are spectrally similar and spatially adjacent.

- Carried out in much the **same way a human analyst** would do based on shape, tone, and texture...
- However, it is more objective, accurate, and repeatable, since it is carried out at the pixel level based on quantitative values. It also reduces processing time

Ideally, analysis process would include:

- Multidate image segmentation on image pairs (justified by the final objective: to determine change.)
- Training area/class signature selection
- Supervised clustering of individual images
- Visual verification and potential editing

21

Ex. of semi-automatic multidate segmentation and change labeling

LULUF with **high accuracy**

It should focus on LUC with interdependent visual assessment of two multidate images (image pairs).

Visual verification

Given the heterogeneity of forest spectral signatures and occasionally **poor radiometric conditions**, the visual

verification by a skilled interpreter is indispensable to map

- Existing maps may be used as support.
- Spectral, spatial, and temporal (seasonality) characteristics of the forests have to be considered.

- FRA 2010 Remote Sensing Survey
- → Visual Control and Interpretation of automated mapping

Source: USGS 2015, GLS dataset; JRC; Simonetti et al. 201

23

2 AD & MONITORING OF LUC	Accuracy assessment: Basic concepts
 Introduction Selection of a monitoring approach Image classification and analysis Accuracy assessment Limitations to using satellite data 	 Reporting accuracy and verification of results are essential components of a IPCC compliant monitoring system. Accuracy assessment should be based on higher quality data, e.g., <i>in-situ</i> observations or analysis of very high resolution aircraft or satellite data. Attention needs to be given to the timing of the reference dataset, so that it matches temporally to the dataset that has been used for the forest cover mapping. Ideally, a statistically valid sampling procedure should be used to quantify accuracy.
25	26

16

Ex. Use of VHR image for accuracy assessment

LANDSAT 30 m versus Kompsat-2 4 m resolution (RGB: NIR-R-G)

Source: USGS 2015, GLS dataset; ESA/JRC TropForest project (Kompsat).

Considerations regarding accuracy assessment

- Monitoring should work **backward** from a recent year to use the **highest quality data first**
- Since areas of land-cover change are significant drivers of emissions, providing the best possible estimates of these areas is critical.
- It is possible to use the results of a rigorous accuracy assessment to adjust area estimates and to estimate the uncertainties for the areas for each class.
- If a statistical approach is not achievable, information obtained through other means can be used to understand the accuracy of the map. Such information may include:
 - Comparisons to other maps
 - Systematic review and **judgment by local experts**
 - Comparisons to **non-spatial statistics**

2 AD & MONITORING OF LUC

- 1. Introduction
- 2. Selection of a monitoring approach
- 3. Image classification and analysis
- 4. Accuracy assessment
- 5. Limitations to using satellite data

Major sources of limitations

- Clouds and cloud shadows
- Other atmospheric effects (e.g., haze and smoke)
- Effect of topography on reflectance
- Insufficient observation frequency (e.g., humid tropics)
- Scarcity of historical data

29

- Tradeoff between spatial resolution and coverage
- Problems of intersensor comparability (e.g., in historical time series)

30

Ex. Of limitations: Scarcity of historical data

In summary

The IPCC guidance and UNFCCC decisions provide general guidelines that should be used to develop national forest definitions and monitoring approaches for REDD+

Numerous remote sensing data and methods can be used to monitor activity data for forests, preferably with:

- Multidate image analysis to detect changes
- Supervised, repeatable classification approaches
- Visual verification and rigorous accuracy assessment of the resulting maps

Even with the **limitations** of satellite observation, remote sensing is **indispensable** for monitoring activity data for forests in tropical countries.

33

References

Beuchle, R., et al. 2011. "A Satellite Dataset for Tropical Forest Change Assessment." International Journal of Remote Sensing 32: 7009–7031. doi:10.1080/01431161.2011.611186.

Bodart, C., et al. 2011. "Pre-processing of a Sample of Multi-scene and Multi-date Landsat Imagery used to Monitor Forest Cover Changes over the Tropics." *ISPRS Journal of Photogrammetry and Remote Sensing* 66: 555–563.

Eva, H. D., et al. 2012. "Forest Cover Changes in Tropical South and Central America from 1990 to 2005 and Related Carbon Emissions and Removals." *Remote Sensing* 4 (5): 1369–1391. doi:10.3390/rs4051369.

FAO (Food and Agriculture Organization). 2010. FAO Forest Resources Assessment of 2010 (FRA). Rome: FAO. http://www.fao.org/docrep/013/i1757e/i1757e.pdf.

FAO. 2015. FAO Forest Resources Assessment of 2015 (FRA). Rome: FAO. http://www.fao.org/forestry/fra/fra2015/en/.

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University³⁴ http://www.gofcgold.wur.nl/redd/index.php.

Hansen, M. C., et al. 2013. "High-resolution Global Maps of 21st-century Forest Cover Change." Science 342: 850–853.

Herold, M. 2009. An Assessment of National Forest Monitoring Capabilities in Tropical Non-annex I Countries: Recommendations for Capacity Building. Report for The Prince's Rainforests Project and The Government of Norway. Friedrich-Schiller-Universität Jena and GOFC-GOLD. http://princes.3cdn.net/8453c17981d0ae3cc8_q0m6vsqxd.pdf

IPCC, 2003. 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme, Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html</u> (Often referred to as IPCC GPG)

Raši, R., et al. 2011. "An Automated Approach for Segmenting and Classifying a Large Sample of Multi-date Landsat-type Imagery for pan-Tropical Forest Monitoring." *Remote Sensing of Environment* 115: 3659–3669.

Simonetti, D., et al. 2011. User Manual for the JRC Land Cover/Use Change Validation Tool. EUR - Scientific and Technical Research Reports. Brussels: Publications Office of the European Union. http://publications.jrc.ec.europa.eu/repository/handle/11111111/16104.

Stibig, H.J., et al. 2003. "Mapping of the Tropical Forest Cover of Insular Southeast Asia from SPOT4-Vegetation Images." *International Journal of Remote Sensing* 24 (18): 3651–3662.

UNFCCC. 2011. Decision 1/CP16. The Cancun Agreements. http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2

USGS (US Geological Survey). 2015. Global Land Survey (GLS) Datasets. Last modified April 20, 2015. http://glovis.usgs.gov/. 18

3 MONITORING OF DEGRADATION

Monitoring Activity Data (AD) for forests remaining forests

After the course the participants should be able to

- Describe different types of forest degradation and the approaches to monitor degradation
- Map and analyze various forest degradation processes using ground surveys and remote sensing tools

3 AD & MONITORING OF DEGRADATION

1. Definition of forest degradation and IPCC GPG* context

- 2. Types of forest degradation
- 3. Approaches to assess forest degradation areas
 - i. Field observation for selective logging
 - ii. Field observation for fuelwood collection
 - iii. Remote sensing approaches
 - a) direct methods
 - b) indirect methods
- 4. Software requirements

*GPG = Good Practice Guidance

2

Defining forest degradation

- Over **50 definitions** have been identified in the scientific literature (Simula 2009; Herold 2011).
- Broadly speaking, forest degradation is a type of anthropogenic intervention that leads to changes in forest cover, structure, composition, and function of the original forest.
- Changes can be **temporary** or **permanent**.
- Changes can affect biodiversity, carbon stocks, hydrological and biogeochemical cycles, soil structure, and other environmental services.

Example of forest degradation caused by recurrent logging and fires in Sinop region, Mato Grosso state, Brazil.

Definitions in the context of IPCC and REDD+

- IPCC, 2003: "A direct, human-induced, long-term loss (persisting for X years or more) or at least Y% of forest carbon stocks [and forest values] since time T and not qualifying as deforestation". NB: X, Y, T are not defined.
- UNFCCC/SBSTA, 2008: "Degradation leads to a loss of carbon stock within forests that remain forests"
- Several processes lead to forest degradation: logging, fuelwood collection, fire, forest grazing, etc.
- It is important to consider what process of degradation to be assessed. Different processes may require different
 methods and data for monitoring

Direct drivers of degradation

Detectability of forest degradation

Natural regrowth

Deforestation

Agroforestry

Detectability using medium-resolution images

Readily detectable	Marginally detectable	Not detectable
Deforestation	Recent selective logging	Hunting or defaunation
Habitat fragmentation	Surface fires	Harvests of many nontimber
Major forest fires	Effects of climate change	forest products
Major highways	on plant phenology	Effects of pathogens
	Small-scale gold mining	Compositional shifts in plan
	Wider roads (6-20 m width)	communities from climate
	Some invasions of exotic	change
	plant species	Nonrecent selective logging
		Narrow roads (<6 m width)
Source: Laurence and I	Peres 2006.	Most secondary effects

 \rightarrow Marginally detectable threats = can be detected, at least partially, using high-resolution methods or specialized detection algorithms... expensive, complex, available for limited areas

7

20

Definition of forest degradation and IPCC GPG* context	Activity/driver of degradation	Activity data (on national level)
Types of forest degradation Approaches to assess forest degradation areas i. Field observation for selective logging ii. Field observation for fuelwood collection	Extraction of forest products for subsistence and local markets, such as fuel wood and charcoal	 Limited historical data Information from local scale studies or using proxies (population density, household consumption, etc.) Only long-term cumulative changes may observed from historical satellite data
iii. Remote sensing approachesa) direct methodsb) indirect methods	Industrial/commercial extraction of forest products, such as selective logging	 Harvest data and statistics Historical satellite data (Landsat time series) analysed within concession areas Direct approach should be explored for recent years
Software requirements	Other disturbances such as (uncontrolled) wildfires	 Historical satellite-based fire data record (since 2000) to be analysed with Landsa type data
ssood Fractice (stilldrifte) 9		Source: Herold et al. 2011.

Sources of information

3 AD & MONITORING OF DEGRADATION

1. Field observations:

- Field data from forest inventory \geq
- **Commercial forestry data** (logging concessions & timber \geq extraction)
- Field data from **targeted surveys** (charcoal, firewood, food crops...) \geq
- **Proxy data** (number of households, distance from urban areas, etc.) \geq for estimating domestic demands (charcoal, firewood, food crops...)

2. Remote sensing:

- > **Direct** detection (forest canopy damage, burnt area)
- > **Indirect** detection (human infrastructures)

AD & MUNITURING OF DEGRADATION

- 1. Definition of forest degradation and IPCC GPG* context

3. Approaches to assess forest degradation areas

- i. Field observation for selective logging

- 4. Software requirements

*CDC <u>– Good Practice Guida</u>

Equation for AD of selective logging (1/2)

Activity data for this method is total volume extracted from the forest per year : $EF(tC/m^3) = ELE + LDF + LIF$

Where:

- ELE = **Extracted Log Emissions** (tC/m³ extracted)
- LDF = Logging Damage Factor, or dead biomass carbon left behind in gap (tC/m³ extracted)
- LIF = Logging Infrastructure Factor, or dead biomass carbon caused by construction of infrastructure (tC/m^3)

Field data are collected from multiple logging gaps to quantify the FLF and LDF

13

22

15

3 AD & MONITORING OF DEGRADATION

- 1. Definition of forest degradation and IPCC GPG* context
- 3. Approaches to assess forest degradation areas

 - Field observation for fuelwood collection Ш.,
- 4. Software requirements

*GPG - Good Practice Guidance

Equation for AD of selective logging (2/2)

LIF C stock estimates of unlogged forest area of infrastructures (skid-trails + roads + decks) harvested volume in m³

14

Modelling firewood supply and demand (1/2)S & D are quantified and spatialized with field surveys 1. Selection of the spatial base 2. DEMAND module 3. SUPPLY module Woodfuel consumption LU/LC change by type, area, user, etc. Woody biomass by LU/LC Urban/rural population Woodfuel Productivity Population growth Accessibility Urbanisation Wood industries' by-products Socio-economic data (cultural/income groups Local survey Geodatabase Local surveys · 2 - ... - ... - ... - ... -3 - ... - ... - ... - ... n - ... - ... - ... - ... -Source: Ghilardi 4. INTEGRATION module 5. Priority areas et al. 2007. · Woodfuel deficit areas · Woodfuel surplus areas Local pressure on woodfue sources Sustainability indexe 16

LU/LC = Land Use / Land Cover

Modelling firewood supply and demand (2/2)Something already carried out in Sudan, in 2011 WISDOM Sudan

Spatial analysis of woodfuel supply and demand in Sudan based on WISDOM methodology and new land cover mapping

Activity carried out in the framework of the: Sudan Institutional Capacity Programme: Food Security Information for Action (SIFSIA) FAO OSRO/SUD/620/MUL

3 AD & MONITORING OF DEGRADATION

- 1. Definition of forest degradation and IPCC GPG* context
- **3.** Approaches to assess forest degradation areas

 - iii. Remote sensing approaches
 - a) direct methods
- 4. Software requirements

18

Challenges of visual interpretation

Defining the boundary between degraded and undisturbed forests is subjective.

Forest degradation signal **disappears** fast, making visual interpretation challenging.

Spectral Mixture Analysis (SMA) (1/2)

found in degraded

Non-photosynthetic

degraded forests. 20

Sinop region, Mato Grosso, Brazil

Spectral Mixture Analysis (SMA) (2/2)

Interpreting endmember fractions

Shade: topography, forest canopy roughness and large clearings

Green vegetation: canopy gaps, forest regeneration and clearings

NPV: canopy damage and burning scars

Soil: logging infrastructure (roads and log landings)

Source: Souza Jr. et al. 2003

22

Combining fraction information Normalized Differencing Fraction Index (NDFI) $NDFI = \frac{GV_{Shade} - (NPV + Soil)}{GV_{Shade} + NPV + Soil}$ Paragominas, Pará State Soi NPV GV $\text{GV}_{\text{Shade}} = \frac{100 - \text{Shade}}{100 - \text{Shade}}$ NDFI Where GV is green vegeation, NPV is the nonphotosynthetic vegetation $-1 \leq \text{NDFI} \leq 1$ NDFI values from 0.70 to 0.85 indicate canopy change that can be associated with forest Source: Souza Jr. 2005 degradation. 23

3 AD & MONITORING OF DEGRADATION

- 1. Definition of forest degradation and IPCC GPG* context

3. Approaches to assess forest degradation areas

iii. Remote sensing approaches

- **b**) indirect methods
- 4. Software requirements

*GPG - Good Practice Guidance

Intact/non-intact forest approach

Intact forest: fully-stocked = any forest with its natural canopy cover between 10% and 100%

Non-intact forest: not fully-stocked = the forest has undergone some level of degradation

Distinction to be applied in **any subcategory** reported under UNFCCC, e.g., intact lowland forest / non-intact lowland forest, intact mountain forest / non-intact mountain forest.

Need to collect carbon stock data for each subcategory.

See <u>www.intactforests.org</u> for global mapping of intact forests

Detailed definition of intact forest land

Country-specific definition could be, e.g.:

Area situated **within the forest land** according to UNFCCC definitions and with a **buffer zone** inside the forest

Containing a **contiguous mosaic** of natural ecosystems

Not fragmented by infrastructure (road, navigable river, etc.)

Without signs of significant human transformation

Without **burnt lands** and **young tree sites** adjacent to settlements

Source: Potapov et al. 2008.

26

Synthesis: Land use change matrix

Delineation of intact forests

A two-step procedure, using the "negative approach":

1/ **Exclusion** of areas around settlements and infrastructure and fragments of landscape smaller than 1,000 ha, based on topographic maps, GIS database, thematic maps, etc.

This first (potentially **fully automated**) step result in a **set of fragments** with **potential intact forests**

2/ **Further exclusion** of non-intact areas is based on **visual or semi-automated interpretation** methods of high-resolution satellite images (~ 10-30 m pixel spatial resolution).

Intact forests are the left landscapes (explaining the term "**negative** approach")

3 AD & MONITORING OF DEGRADATION

- 1. Definition of forest degradation and IPCC GPG* context
- 2. Types of forest degradation
- 3. Approaches to assess forest degradation areas
 - . Field observation for selective logging
 - i. Field observation for fuelwood collection
 - iii. Remote sensing approaches
 - a) direct methods
 - b) indirect methods

4. Software requirements

Software to map forest degradation

- Commercial software such as ENVI, ERDAS, PCI, and ArcGIS can be used to implement most of the methods discussed above.
- Specialized software has been developed to deal specifically with the monitoring of forest degradation:
 - CLASlite (see http://claslite.ciw.edu/en/)
 - ImgTools (see <u>https://imazon.org.br/PDFimazon/Portugues/congressos</u> <u>%20e%20anais/p1235.pdf</u>)

26

In Summary

- Need to clearly define forest degradation and to set a benchmark for measuring forest carbon stock changes
- Detection of forest degradation by earth observation is not always possible.
- Different methodologies can be used to assess different types of forest degradation:
 - Field observations
 - Direct remote sensing methods
 - Indirect remote sensing methods
- Diverse commercial and open source software available for mapping forest degradation

33

References

Bucki et al. 2012. "Assessing REDD+ Performance of Countries with Low Monitoring Capacities: The Matrix Approach." *Environmental Research Letters* 7: 014031. http://iopscience.iop.org/1748-9326/7/1/014031/pdf/1748-9326_7_1_014031.pdf.

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

Ghilardi, Adrian, Gabriela Guerrero, and Omar Masera. 2007. "Spatial Analysis of Residential Fuelwood Supply and Demand Patterns in Mexico Using the WISDOM Approach." *Biomass and Bioenergy* 31 (7): 475–491. http://dx.doi.org/10.1016/j.biombioe.2007.02.003.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.php.

34

Herold, M., et al. 2011. "Options for Monitoring and Estimating Historical Carbon Emissions from Forest Degradation in the Context of REDD+." <u>Carbon Balance and Management</u> 6 (13). doi:10.1186/1750-0680-6-13. http://www.cbmjournal.com/content/6/1/13

Hosonuma, N., M. Herold, V. De Sy, R. De Fries, M. Brockhaus, L. Verchot, A. Angelsen, and E. Romijn.
2012. "An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries."
Environmental Research Letters 7 (4) 044009. doi:10.1088/1748-9326/7/4/044009.

Laurance, William F., and Carlos A. Peres. 2006. *Emerging Threats to Tropical Forests*. University of Chicago Press.

Mollicone, D., et al. 2007. "An Incentive Mechanism for Reducing Emissions from Conversion of Intact and Non-intact Forests." *Climatic Change* 83: 477–93.

Morton, D., et al. 2011. "Historic Emissions from Deforestation and Forest Degradation in Mato Grosso, Brazil: 1) source data uncertainties." *Carbon Balance and Management* 6 (18). doi:10.1186/1750-0680-6-18.

Pearson, T. R. H, S. Brown, and F. M. Casarim. 2014. "Carbon Emissions from Tropical Forest Degradation Caused by Logging." *Environmental Research Letters* 9 (3): 034017. doi:10.1088/1748-9326/9/3/034017 <u>https://www.winrock.org/wp-content/uploads/2016/03/Pearson-et-al-2014-Logging.pdf</u> Pearson, T. R. H, S. Brown, L.T. Murray, and G. Sidman. 2017. "Greenhouse gas emissions from tropical forest degradation: an underestimated source." *Carbon Balance and Management 12:3* <u>https://link.springer.com/article/10.1186%2Fs13021-017-0072-2</u>

Potapov, P., et al. 2008. "Mapping the World's Intact Forest Landscapes by Remote Sensing." *Ecology and Society* 13: 51. http://www.ecologyandsociety.org/vol13/iss2/art51/.

Simula, M. 2009. "Towards Defining Forest Degradation: Comparative Analysis Of Existing Definitions." Working Paper 154, FAO, Rome. ftp://ftp.fao.org/docrep/fao/012/k6217e/k6217e00.pdf

Souza. 2012. "Monitoring of Forest Degradation." In: Achard, F., Hansen, M.C. *Global Forest Monitoring from Earth Observation*. CRC Press. https://www.crcpress.com/product/isbn/9781466552012

Souza, C. and Barreto, P. 2000. An alternative approach for detecting and monitoring selectively logged forests in the Amazon. *International Journal of Remote Sensing*, 21, 173–179.

UNFCCC (United Nations Framework Convention on Climate Change). 2008. "Informal Meeting of Experts on Methodological Issues Related to Forest Degradation: Chair's Summary of Key Messages." Bonn, October 20–21. http://unfccc.int/methods_science/redd/items/4579.php.

4 ESTIMATION OF EFs

Estimating Emission Factors (EFs) for LULUCF activities

After the course the participants should be able to describe the procedures and methods to develop estimates of EFs the major LULUCF activities

4 ESTIMATION OF EFs

1.Context: LULUCF activities, C pools and levels of tier

- 2.Estimating EFs using stock-difference and gain-loss methods
- 3. Field inventory: stratification and sampling
- 4. Estimating C pools
- 5.Errors and QA/QC

IPCC Tiers for estimating EFs

	Tier 1	Tier 2	Tier 3
Data granularity	Default values for broad continental forest types	Country-specific	Region/forest specific
Data Sources	IPCC Emission Factor Data Base (EFDB)	Country-specific data for key factors (e.g. from field measurements)	Comprehensive field sampling repeated at regular time intervals, soils data, and use of locally calibrated models
Cost & Uncertainty	Low cost and High uncertainty	Medium to low cost and uncertainty	High cost and Low uncertainty
Fate of pools post deforestation	Assume immediate emissions at time of event—i.e. committed emissions	Can use disturbance matrices to model retention, transfers, and releases	Model transfers and releases among pools to reflect emissions through time
Default value	(Tier 1): available	in IPCC 2003 (GPG & 2006 GL
IPCC encoura	aes the use of hi d	ther tiers to es	stimate EFs for

significant activities and pools

4 ESTIMATION OF EFs

1.Context: LULUCF activities, C pools and levels of tier

2.Estimating EFs using stock-difference and gain-loss methods

- 3. Field inventory: stratification and sampling
- 4.Estimating C pools
- 5.Errors and QA/QC

2 approaches: stock-difference and gain-loss

	Stock-Difference	Gain-Loss
Description	Difference in C stocks in a particular pool in pre- and post-forest cover change	Net balance of additions to and removals from a carbon pool
Data requirements	Data needed on forest carbon stocks in key pools before and after conversion	Annual data needed on C losses and gains, e.g., annual tree harvest volume and annual rates of forest growth post-tree removals
Applications	Appropriate for deforestation and afforestation and for reforestation	Appropriate for forest degradation caused by tree harvest and the regrowth of carbon stocks postdisturbance
		9

Standard equation for conversion: stock-difference

 \rightarrow Most commonly applied for estimating emissions from deforestation or removals from afforestation

$$EF = \left(C_{bio,pre} - C_{bio,post} + \left\{\left[CS_0 - CS_D\right]/D\right\}\right) \times \frac{44}{12} + E_{oth}$$

Where:

- EF = Emission factor, t CO_2 -e ha⁻¹
- $C_{bio,pre}$ = C stock in biomass prior to conversion, t C ha⁻¹
- $C_{bio,post}$ = C stock in biomass post-conversion, t C ha⁻¹
- CS₀ = Initial or reference soil organic carbon,
- CS_D = Soil organic carbon at default time D, t C ha-1
- D = Default time period to transition to a new equilibrium value (20 year)
- 44/12 = Conversion factor for C to CO₂
- $E_{oth} = Emissions of non-CO_2 gases, such as CH_4 \& N_2O released during$ $burning, t CO_2-e ha^{-1} (in the case of deforestation)$

10

Standard equation for degradation: gain-loss

 \rightarrow Particularly useful for estimating emissions from forest degradation

$$EF = (\Delta C_G - \Delta C_L) \times \frac{1}{12} + E_{Oth}$$

Where:

- EF = Emission factor (t CO_2 -e ha⁻¹)
- ΔC_G = Carbon stock gains in all pools (t C ha⁻¹) = function of harvest (roundwood, firewood)
- ΔC_L = Carbon stock losses in all pools (t C ha⁻¹) = function of annual increment and regrowth after harvest
- 44/12 = Conversion factor for C to CO₂
- E_{oth} = Emissions of non-CO₂ gases, such as CH₄ & N₂O released during burning, t CO₂-e ha⁻¹

4 ESTIMATION OF EFs

- 1.Context: LULUCF activities, C pools and levels of tier
- 2.Estimating EFs using stock-difference and gain-loss methods

3.Field inventory: stratification and sampling

- 4.Estimating C pools
- 5.Errors and QA/QC

Assessing the need for new data	Purpose of stratification		
 Quality, quantity, and availability of existing data must be assessed, to see whether new data need to be collected Criteria that existing data need to meet are: Less than 10 years old 	The purpose of stratification is to organize a <i>heterogeneous</i> area into "strata" that form relatively <i>homogenous</i> units.		
 Derived from multiple measurement plots, in different strata All species must be included in inventories Minimum Diameter at Breast Height (DBH) is 20 cm or less If new data needed: Full inventory: time consuming and expensive. Not recommended for forests> 10 ha. Statistical inventory (= by sampling): plots measurements are extrapolated to the whole massif. Need defining strata and designing a sampling plan 	 Overall sampling effort is reduced: More homogeneous strata mean that fewer samples are needed to achieve a given target for accuracy/precision Efforts are focused on strata with a higher heterogeneity (e.g., a higher standard deviation for C stocks, calculated effects are needed. 		
Stratification plan 1. Develop initial stratification plan based on biophysical or human factors influencing the distribution of C stocks:	Plots – Number (1/3) The number of plots should be <u>large enough</u> to have an accurate estimate, but <u>small enough</u> to minimize costs.		
• Land use	The number of plots to inventory depends on:		
 Vegetation/forest type Elevation/slope Drainage Proximity to human infrastructure 	 Heterogeneity of AGB (proxy for C stocks) in each strata, characterized by standard deviation (from pre-inventory or literature) → The greater the heterogeneity, the more measurements needed to approach the mean precisely. 		
2. Collect preliminary data on AGB (proxy) to extrapolate the heterogeneity of C stock in each stratum	 Level of precision targeted for monitoring: acceptable error = confidence interval and probability threshold = degree of confidence. 		
(at least 20 plots per stratum. PICARD, 2006) AGB = Above-Ground Biomass 15	• For ex., choosing an acceptable error of 10% (± 5% confidence interval) with a 95% probability threshold means that there is a 95% chance that the result will be within a range of ± 5% around the "real" value.		

Plots – Number (2/3)	Plots – Number (3/3) $\frac{\alpha}{dd1}$ 0,90 0,50 0,30 0,20 0,10 0,05
Diverse formula exist to estimate the number N of sample plots. In Mali, for instance, this one is recommended to design Forest Management Plans (Manuel d'aménagement forestier - Nouvellet, 2002): $\mathbf{N} = \mathbf{t}^2 \mathbf{C} \mathbf{V}^2 / \mathbf{e}^2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<pre>t = Student's t-value for the probability threshold p CV = Coefficient of Variation (=standard deviation / mean) e = Acceptable error In general, p = 95% and e = 10%</pre>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
17 Ex. Relation between AGB or C stock heterogeneity and number of plots	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4500 4000 500 500 500 500 500 500	Most recommended: systematic sampling, with plot density depending on stratification (more plots for strata with higher heterogeneity) and random starting point for the grid
precise results 19	20

Strata B: High SD / poor precision

Plots – Positioning (2/2)

Possible to set up a **cluster sampling** for large forest inventories **> spatial concentration** of field work: saving of time and resources

Plots – Size, shape, permanent vs non-permanent

Size : need to have enough trees to estimate the mean C stock with the lesser uncertainty: In Sahel, it is recommended to have at least 8-10 trees/plot (Pearson et al., 2005).

Thiombiano et al. (2016) provide indications for the minimum area per plot, depending on the type of vegetation:

Type de végétation	Superficie (m ²)
Forêts denses et galeries forestières	500 (50 m x 10 m)
Savanes et forêts claires: placettes de forme carré	900 (30 m x 30 m)
Savanes et forêts claires: placettes de forme rectangulaire	1000 (50 m x 20 m)
Steppes	2500 (50 m x 50 m)
Systèmes agroforestiers	2500 (50 m x 50 m)
Formations contractées	2500 (100 m x 25 m))
Prairie aquatique	16 (4 m x 4 m)

They also provide indication for "subplots" (inr

regeneration)

incy also provide		
indication for	Type de végétation	Superficie (m ²)
"subplots" (inper	Systèmes agroforestiers, steppe et formations contractées	$25(5 \text{ m} \times 5 \text{ m})$
subplots (initiei	Savanes et forêts claires	25 (5 m × 5 m)
circle to assess	Forêts denses et galeries forestières	$1(1 \text{ m} \times 1 \text{ m})$
no con curchian)		

Shape: No impact on calculations...Circle, square, rectangle...

Permanent or not: Depend on the objectives. NP plots can ²² give statistically sound results in most cases.

4 ESTIMATION OF EFs

- **1.**Context: LULUCF activities, C pools and levels of tier
- 2.Estimating EFs using stock-difference and gain-loss methods
- 3. Field inventory: stratification and sampling

4.Estimating C pools

5.Errors and QA/QC

Which carbon pools to monitor? (1/2)

LULUCF activity to be monitored. For ex, SOC estimates needed for deforestation, not for degradation

Absolute level of C stocks in the pool

Relative change of C stocks in the pool, following human disturbance

Methods available to measure

Costs to measure

Attainable accuracy and precision

Which carbon pools to monitor? (2/2)

→ AGB (trunks, branches, etc.): in all cases, easy to measure; represents a large portion of the total C stock

→ BGB (roots): in all cases, robust models/estimates are provided in IPCC, 2006, AFOLU GL; represents a large portion of the total C stock

Other C pools? → To assess **case by case**, but "good practice" according to IPCC (*completeness principle*) to include pools representing **5% or more** of total C stock:

- **Dead wood** (standing and lying): can represent up to 10% of the total C stock
- Soil C: (i) should be **included** if deforestation with soil **disturbance** (agriculture, roads, mines, etc.) (ii) could be **ignored** if conversion to **grassland** 25

For Tier 1: using IPCC default value or global Biomass C stock maps

- Biomass C stock map shown below is an improvement over the IPCC Tier 1 values
- EFs can be developed using biomass C stock maps, which provide estimates of C stocks by each strata, with the stock-difference method.

26

For Tier 2 and 3: traditional field measurements
Repeat measurements in many sample plots across landscape, using a

stratification strategy.
Measure different carbon pools within strata.

Importance of Standard Operating Procedures (SOPs)

USAID ASIA

Methods must be **standardized** to ensure measurements are implemented **consistently** between **field crews and inventories.**

→ Standard Operating Procedures (SOPs)

For ex., Winrock SOPs for Terrestrial Carbon Measurements can be used to measure C stocks of forests and other land cover types.

loof

dard Operating Procedures for Terrestria

Estimating forest C stocks using field data (1/2)

- Measurements of carbon pools are recorded in the field.
- Allometric equations are used to estimate C stocks in AGB, based on field data.
- BGB is generally derived from AGB, using a shoot-to-root ratio. Other C pools are estimated with other formula/models.
- Plot results are extrapolated at strata level.

Estimating forest C stocks using field data (2/2)

Allometric equation: based on destructive measurements of hundreds of trees...Development of such equation: research

Validating existing allometric equations

Many allometric equations worldwide: **adequacy** needs to be **verified** with **local data** or through **destructive sampling**.

Ex: Chave et al. (2005) equation based on DBH and wood density, developed in the **Congo Basin** and tested in **Guyana**

32

Estimating C in the BGB

BGB (roots) is **rarely measured**. A **root-to-shoot ratio** can be applied instead, such as those from IPCC.

$\label{eq:table 2.3.3.} \textbf{Root to shoot ratios modified* from Table 4.4. in IPCC GL AFOLU.}$

Domain	Ecological	Zone	ground biomass	Root-to- shoot ratio	Range	For instance, in
	Tropical rainforest		<125 t.ha-1	0.20	0.09-0.25	Tropical dry
Tropical	or humid for	rest	>125 t.ha-1	0.24	0.22-0.33	forest with
Topical	Tropical dry forest		<20 t.ha-1	0.56	0.28-0.68	less than 20
	Tropical dry	iorest .	>20 t.ha-1	0.28	0.27-0.28	t/ha of AGB
	Subtropical	humid	<12 <mark>5</mark> t.ha-1	0.20	0.09-0.25	- (e.g.,
Subtropical	forest		>125 t.ha-1	0.24	0.22-0.33	steppes):
Subtropical	Subtropical	opical dry	<20 t.ha-1	0.56	0.28-0.68	
	forest		>20 t.ha-1	0.28	0.27-0.28	- BGB = 0.50 X

Mokany, the lead author of the peer reviewed paper from which the data were extracted.

33

36

Estimating C in the deadwood

Standing deadwood: Estimate a % of AGB

Lying deadwood: use the "*transect intersection method*" → Diameters of deadwood elements are measured at the intersection of a transect established on the plots

Volume of deadwood per ha:

Estimating C in the soil (1/2)

Need to follow specific IPCC guidelines, depending on the LULUCF activity to monitor

Soil carbon pool	Tier 1	Tier 2	Tier 3
Organic carbon in mineral soil	Default reference C stocks and stock change factors from IPCC	Country-specific data on reference C stocks & stock change factors	Validated model complemented by measures, or direct measures of stock change through monitoring networks
Organic carbon in organic soil	Default emission factor from IPCC	Country-specific data on emission factors	Validated model complemented by measures, or direct measures of stock change
ianic soils : do nificant amount	minated by the rem ts at the soil surface.	ains of plants that accu ; commonly called peats	imulate in
neral soils: m	ainly composed of m ment of the surface <i>k</i>	ixtures of sand, silt, a aver with organic matter	nd clay , often

Estimating C in the soil (2/2)

Theorem 2 equation to estimate ΔC : $[CS_0 - CS_D]/D$, where:

 CS_0 = Initial soil organic carbon, t C ha-1

 CS_D = Soil organic carbon at default time D, t C ha-1

D = Default time period to transition to a new equilibrium value (**20 years**)

 $CS_D = CS_O * F_{LU} * F_{MG} * F_{I_r}$ with F factors (dimensionless) related to Land Use system (F_{LU}), soil Management regime (F_{MG}), and organic matter inputs (F_I)

FLU	F _{мG} ,	Fi	
0.48	1.0	1.0	
			Source: IPCC, 2006, AFOLU GI
0.82	1.0	0.92	
0.65/0.80	1.0	1.0	
	FLU 0.48 0.82 0.65/0.80	FLU Fмс, 0.48 1.0 0.82 1.0 0.65/0.80 1.0	FLU FMG, FI 0.48 1.0 1.0 0.82 1.0 0.92 0.65/0.80 1.0 1.0

From sample plots to total biomass C

- $1. \ {\rm Estimate} \ {\rm biomass} \ {\rm stocks} \ {\rm for} \ {\rm each} \ {\rm pool}$
- 2. Scale each sample to per hectare level
- **3.** Convert biomass values to carbon values (C fraction = 0,5; $CO_2 = 44/12 \times C$)
- **4. Calculate mean and 95% confidence** interval of C stock in each pool within each stratum
- 5. Sum mean stock per pool

Example of EF development for deforestation

Conversion of forest to cropland

Carbon Pool	Carbon Stock (t C ha ⁻¹)	
Aboveground tree biomass	190.6 ± 15.5	EF
Belowground tree biomass	44.8± 3.7	
Saplings*	5.2 ± 0.6	=
Dead wood (standing) [#]	3.3 ± 1.7	=
Dead wood (lying) [#]	19.3 ± 3.7	=
Total carbon mock	263.2	FF
Soil to 30 cm	102 ± 23.7	
Annual crops	3.0	=
		= 1)× =
		Tot

Assume all emissions occur at time of event

EF for biomass components
$=(Cpre-Cpost) \times 44/12$ =(263.2-3.0) x 44/12
$= 954 \text{ tCO}_2/\text{ha}$

EF for soil:

= $(CS_0 - CS_0 * F_{LU} * F_{MG} * F_I)$ =(102- 102 x 0.48 x 1 x 1)x44/12 = 194 tCO₂/ha

Total EF = $1,148 \text{ tCO}_2/\text{ha}$

38

4 ESTIMATION OF EFs

- 1.Context: LULUCF activities, C pools and levels of tier
- 2.Estimating EFs using stock-difference and gain-loss methods
- 3. Field inventory: stratification and sampling
- **4.**Estimating C pools
- **5.**Errors and QA/QC

1st type of error: Sampling error

Sampling error reflects the **variability** in the **estimate** due to measuring **only a subset** of the population of interest.

A large sampling error can result from incorrect distribution or number/size of plots used for sampling.

Plot size, plot number and **distribution** must adequately and efficiently capture **spatial variability**.

37

2nd type of error: Measurement error

There are **many opportunities** to make measurement and recording mistakes during field inventory!

3rd type of error: Model or regression error

Regression equations are developed specifically for a **specific set of tree species** within a **specific DBH range**.

Large regression errors can occur if field inventory DBH values are applied to an **inappropriate** regression formula for the **DBH range** and **species range**.

42

Quality Assurance / Quality Control (QA/QC)

To minimize error, data collection and analysis should include **QA/QC** measures for:

- Collecting reliable field data → Data collection should follow a set of SOPs
- Verifying methods used to analyze field data → Regular checks by supervisor are needed
- Verifying results → Outliers and mistakes should be identified as far as possible, to see whether they relate to a problem in data entry and/or use of methods
- Maintaining and archiving data → Data should be stored in a secure / fire-proof location and backed up routinely

In summary

- The IPCC recommends that it is good practice to use higher Tiers for the measurement of significant sources/sinks.
- The stock-difference method is most commonly applied for estimating emissions from conversion (deforestation / afforestation)
- The gain-loss method is the most suitable method to estimate emissions from forest remaining forest (degradation / SFM).
- Allometric equations that link tree variables (DBH, height, wood density) to AGB are basis to estimate C emissions/removals
- The use of SOPs and QA/QC are important to ensure the quality of estimates and to minimize errors.

43

38

References

Brown, S., F. M. Casarim, S. K. Grimland, and T. Pearson. 2011. *Carbon Impacts from Selective Logging of Forests in Berau District, East Kalimantan, Indonesia: Final Report to the Nature Conservancy*. Arlington, VA: Nature Conservancy. http://www.winrock.org/resources/carbon-impacts-selective-logging-forests-berau-district-east-kalimantan-indonesia.

Chave, J., et al. 2005. "Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests." *Oecologia* 145: 87–99. <u>http://www.winrock.org/resources/tree-allometry-and-improved-estimation-carbon-stocks-and-balance-tropical-forests</u>.

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.php. IPCC 2006. *2006 IPCC Guidelines for National Greenhouse Gas Inventories*. Volume 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html</u> (Often referred to as IPCC AFOLU GL)

Pearson, T. R. H., S. Brown, and F. M. Casarim. 2014. "Carbon Emissions from Tropical Forest Degradation Caused by Logging." *Environmental Research Letters* 9: 034017. doi:10.1088/1748-9326/9/3/034017.

UNFCCC COP (United Nations Framework Convention on Climate Change Conference of the Parties) Decisions:

- Decisions of the Conference of the Parties (COP). <u>http://unfccc.int/documentation/decisions/items/3597.php#beg</u>
- UNFCCC. 2009. Methodological guidance for REDD+. http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf#page=11
- UNFCCC. 2012. Decision 12/CP17. http://unfccc.int/resource/docs/2011/cop17/eng/09a02.pdf#page=16
- UNFCCC. 2013. Decision 1/CP18. <u>http://unfccc.int/resource/docs/2012/cop18/eng/08a01.pdf#page=6</u>

45

5 GHG Inventory

Estimating GHG emissions/rem ovals from LULUCF activities

After the course the participants should be able to estimate GHG emissions and removals from LULUCF activities in accordance with the requirements from the IPCC GPG and GL

3

GHG Inventory

- 1. 2006 IPCC AFOLU Guidelines and 2003 GPG-LULUCF land-use categories and subcategories
- 2. Estimating emissions and removals: Combining emission factors (EFs) and activity data (AD)
- **3.** Methods for estimating C emissions from deforestation (conversion of forests to nonforests): country example of Guyana

2003 IPCC GPG LULUCF (1/2)

Dividing landscapes into **categories** allow nations to track land-use changes over time in a **consistent** and **comparable** manner

2003 IPCC GPG LULUCF (2/2)

2

4

Monitoring of emissions/removals from **any LU category remaining the same LU category**, as well as from **LUC between categories**

LU categories can be **divided** into as many **sub-categories** (**strata**) as required, to have the **most complete & accurate MRV possible**

		Forest	land	
For instart sub-cated for Forest From ↓	hce: 2 To gories \rightarrow t Land	"Intact (natural) forest″	"Non-intact forest"	Other land
	"Intact (natural) Forest"	Forest conservation	Forest degradation	Deforestation
Forest land	"Non- intact forest"	Enhancement of C stocks (forest restoration)	Sustainable management of forests	Deforestation
Othe	er land	-	Enhancement of C stocks (A/R)	

Basic equation: Combining AD and EFs

GHG GHG Area or emissions/removals X volume = emissions/ per unit (Emission (Activity Data) removals Factor)

Activity Data (AD):

- **Spatial extent** of **land use** (e.g., sustainable forest management) or land use change (e.g., deforestation or afforestation). Expressed in **ha/yr**
- Volume of harvested wood (timber or fuel) in the case of forest **degradation**. Expressed in **m³/vr**

Emission Factors (EF): Emissions/removals of GHG per unit of activity, e.g., tCO_{2eg}/ha or tCO_{2}/m^{3}

Ex: Deforestation - Developing AD

- Create **multidates LULUCF maps**, differentiating different Forest land sub-categories if needed (e.g., mountainous intact forest, mountainous non-intact forest, lowland intact forest, lowland non-intact forest)
- Track areas of change in each subcategories (ha/yr).

7

42

11

• EFs: Create EFs for all types of afforestation (expressed in tCO_{2eq}/ha). Ex for type I of A/R: EF_i (tCO₂/ha/yr) = Carbon Fraction (tC/tdm) x 44/12 x Basic Wood Density (tdm/m³) x Increment_i (m³/ha/yr) x Biomass Expansion Factor x (1+R), where R = Root-to-Shoot ratio (dimensionless).

- Extracted Log Emissions (ELE)
- Logging Damage Factor (LDF)
- Logging Infrastructure Factor (LIF)
- C emissions = volume x (ELE + LDF+ LIF)

GHG Inventory

- 1. 2006 IPCC AFOLU Guidelines and 2003 GPG-LULUCE land-use categories and subcategories
- 2. Estimating emissions and removals: Combining emission factors (EFs) and activity data (AD)
- 3. Methods for estimating C emissions from deforestation (conversion of forests to nonforests): country example of Guyana

Country example: Guyana

- A High Forest cover, Low Deforestation (HFLD) country
- Historically, lack of data on forest cover and deforestation
- Main driver of emissions from deforestation is mining
- Currently developing national-level REDD+ system

Source: http://news.mongabay.com/ 2006/0501-guyana.html

14

Gathering data to estimate AD

GIS and remote sensing data collection and processing for the monitored years, including:

- Mapping areas of forest change (per activity/driver)
- Mapping areas of forest loss due to wildfire

	Potential for	Future Change	e strata (v. 2011)		D
Driver Year 2	High	Medium	Low	Total	Data for 1990
Agriculture	38	14		52	Landsat.
Degraded Burning	8	77	0	85	Landouti
Forest Harvest	3,039	743	75	3,857	Data for 201
Forestry Roads	319	60	1	380	are from
Infrastructure Roads	256	88	33	377	Landsat and
Mining	12,190	833	295	13,317	RapidEye.
Mining Roads	971	157	10	1,138	Data for 2017
Natural	208	60	124	392	and going
Shifting Agriculture	113	142	62	317	forward are
Total	17,142	2,173	600	19,915	wall-to-wall
Satellite images analys	sed by Indufor a	and Guvana For	estry Commission (C	GFC).	RapidEve.

Satellite images analysed by Indufor and Guyana Forestry Commission (GFC).

Gathering data to estimate EFs

C stocks in forest carbon pools were estimated through: Collecting data from a well-designed sampling plan Data derived from **multiple measurement plots** Including **all species** and **all 5 pools** in inventories Minimum diameter at breast height (DBH) was 5 cm

Stratified by threat to ensure cost-effective sampling while producing results with low uncertainties: acceptable error of +/-15%, set at 95% confidence interval

15

43

Estimating EFs: Forest carbon stratification map

Estimation of C emissions from deforestation

A. AD from satellite imagery by Indufor and Guyana Forestry Commission (GFC)

Ctratum	Drivers	Area of Ch	ange (ha)	
Stratum	Drivers	2010	2011	
	Forestry infrastructure	70	172	
More	Agriculture	15	31	
Accessible	Mining (medium and large scale)	1,423	4081	
(MA)	Infrastructure	9	493	
	Fire-Biomass burning		14	Х
	Forestry infrastructure	224	61	
Less	Agriculture	498	20	
Accessible	Mining (medium and large scale)	7,955	4107	
(LA)	Infrastructure	55	866	
	Fire-Biomass burning	32	44	

Assumes instantaneous oxidation—that is, occurs in year of event

B. EF from field measurements of 35 cluster plots (precision about 12% of mean at 95% confidence) by Winrock International and GFC

Stratum	Drivers	Emission Factors
Stratum	Divers	t CO₂e/ha
	Forestry infrastructure	1,010.6
More	Agriculture	1,116.8
Accessible	Mining (medium and large scale)	1,010.6
(MA)	Infrastructure	1,010.6
	Fire-Biomass burning	744.6
	Forestry infrastructure	1,448.0
Less	Agriculture	1,536.5
Accessible	Mining (medium and large scale)	1,368.9
(LA)	Infrastructure	1,448.0
	Fire-Biomass burning	1,108.6

Drivers	Emissions		
Drivers	2010	2011	
orestry infrastructure	395,594	261,657	
griculture	781,258	66,215	
lining (medium and large scale)	12,327,673	9,746,426	
frastructure	88,318	1,752,972	1
re-Biomass burning	35,605	58,738	-
ubtotal t CO2/yr	13,628,448	11,886,007	

Estimating EFs for deforestation

EFs from field measurements of **35 cluster plots** established in sampling design

Precision of C stocks was <12% of mean at 95% confidence

Stratum	Drivors	Emission Factors	Road
Stratum	Dilvers	t CO₂e/ha	10 x 10 km grid
	Forestry infrastructure	1,010.6	Phase 1 sampling plan
More	Agriculture	1,116.8	High Potential / MA
Accessible	Mining (medium and large scale)	1,010.6	Less Accessible PSUs (1-20)
(MA)	Infrastructure	1,010.6	More Accessible PSUs (1-30)
	Fire-Biomass burning	744.6	More Accessible PSUs (31-36)
	Forestry infrastructure	1,448.0	Lato
Less	Agriculture	1,536.5	TX.
Accessible	Mining (medium and large scale)	1,368.9	E V
(LA)	Infrastructure	1,448.0	2 The
	Fire-Biomass burning	1,108.6	0 50 100 200
Data collecte	d and analyzed by Winrock and Guy	ana Forestry	

Data collected and analyzed by Winrock and Guyana Foresti Commission

In summary

- Estimating C emissions and removals from LULUCF follows IPCC
 2006 AFOLU GL, using 2003 GPG LULUCF
- Estimating emissions and removals is a combination of AD and EFs.
- The stock-change approach is commonly used to estimate C emissions from deforestation or removals from afforestation
- The gain-loss approach is commonly used to estimate C emissions from degradation

References

Brown, S., F. M. Casarim, S. K. Grimland, and T. Pearson. 2011. *Carbon Impacts from Selective Logging of Forests in Berau District, East Kalimantan, Indonesia: Final Report to the Nature Conservancy*. Arlington, VA: Nature Conservancy. http://www.winrock.org/resources/carbon-impacts-selective-logging-forests-berau-district-east-kalimantan-indonesia.

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.php.

IPCC, 2003. 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme, Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html</u> (Often referred to as IPCC GPG)

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html</u> (Often referred to as IPCC AFOLU GL)

Pearson, T. R. H, S. Brown, and F. M. Casarim. 2014. "Carbon Emissions from Tropical Forest Degradation Caused by Logging." Environmental Research Letters 9 (3): 034017. doi:10.1088/1748-9326/9/3/034017 <u>https://www.winrock.org/wp-</u> content/uploads/2016/03/Pearson-et-al-2014-Logging.pdf

Winjum, J. K., S. Brown, and B. Schlamadinger. 1998. "Forest Harvests and Wood Products: Sources and Sinks of Atmospheric Carbon Dioxide." *Forest Science* 44: 272–284. 21

- After the course the participants should be able to:
- Identify sources of uncertainty in the estimates of area change (AD) and carbon stocks change or GHG flux (EF)
- Implement the correct steps to calculate uncertainties and minimise them in a conservative way

6 ESTIMATION OF UNCERTAINTIES

1. General concepts

- 4. Combination of uncertainties

2

Uncertainty in IPCC and UNFCCC context

Uncertainty is the lack of knowledge of the true value of a parameter (e.g., area and C stock estimates in LULUCF context)

Assessing uncertainty is FUNDAMENTAL in the IPCC and UNFCCC contexts: the IPCC defines GHG inventories consistent with "good practice" as those which "contain neither overnor underestimates so far as can be judged, and in which uncertainties are reduced as far as practicable."

In the **accounting context**, (i.e., if reduced GHG emissions or increased C removals are rewarded), information on uncertainty are used to develop conservative estimates, to ensure that claims for reward are not overestimated.

Systematic errors and random errors (1/2)

- Uncertainty consists of two components:
 - Bias or systematic error (lack of accuracy) occurs, e.g., due to flaws in the measurements or sampling methods or due to use of an EF that is not suitable
 - **Random error** (lack of **precision**) is a random variation above or below a mean value. It cannot be fully avoided but can be reduced by, for example, increasing the sample size.

Accuracy: agreement between estimates and the true value Precision: agreement among repeated estimates

Accurate but not precise

Precise but not accurate

3

46

Systematic errors and random errors (2/2)

Systematic errors: to be **avoided** where possible, or quantified ex-post and **removed**.

Random errors: cannot be avoided but **can be reduced**. Tend to **cancel out** each other at higher levels of aggregation.

For ex., **estimates at national** levels (e.g., total biomass, total forest area) *usually** have a **lower impact** from random errors than **estimates at sub-national** levels.

*Assuming that larger areas have **greater sample sizes** which, in turn, lead to **greater precision** and **less uncertainty**.

95% Confidence interval

Uncertainty is usually expressed by a **95%** *confidence interval*:

For ex, if a certain area is estimated at 100 ha (mean value) with a 95% confidence interval ranging from 80 to 120 ha, it means:

• The **uncertainty** in the area estimate is **±20%**.

(or, in other words)

• There is **95% of chance** that the **true value** for the area is **between 80 and 120 ha**

Correlation

- *Correlation* means **dependency** between parameters:
 - The "**Pearson correlation coefficient**" assumes values between [-1, +1]
 - Correlation coefficient of +1 means a **perfect positive correlation**
 - If the variables are **independent** of each other, the correlation coefficient is **0**

Trend uncertainty

- The trend describes the change of emissions or removals between two points in time.
- Trend uncertainty describes the uncertainty in the change of emissions or removals.
- Trend uncertainty is expressed as percentage points: For ex, if the trend is +5% and the 95% confidence interval of the trend is +3 to +7%, we can say that trend uncertainty is ±2% points.

7

47

5

6 ESTIMATION OF UNCERTAINTIES	Accuracy assessment of land cover and changes (1/3)
1. General concepts	Methods are diverse . In all case, the accuracy is assessed via <i>independent reference data</i> (greater quality than the map)
	The aim is to characterize the frequency of errors (omission and commission) for each land cover class.
2. Uncertainties in area-change estimates	<i>Errors of omission</i> = excluding an area from a category to which it does truly belongs, i.e., area underestimation
3. Uncertainties in carbon stocks change estimates	<i>Errors of commission</i> = including an area in a category to which it does not truly belong, i.e., area overestimation
4. Combination of uncertainties	Differences in these two errors may be used to adjust area estimates and to estimate the uncertainties for each class.
	Adjusting area estimates on the basis of a rigorous accuracy assessment represents an improvement over simply reporting the areas of map classes .
9	- 10

Accuracy assessment of land cover and changes (2/3)

• Example of accuracy measures for the **forest class**:

- Error of **commission**: (13+45)/293 = 19.80%
- Error of **omission**: (25+3)/263 = 10.65%
- User's accuracy: 235/293 = 80.20%
- Producer's accuracy: 235/263 = 89.35

• Overall accuracy = (235+187+215+92+75)/986 = 81.54%

Accuracy assessment of land cover and changes (3/3)

For **land-cover changes**, additional considerations apply:

- Reference data: It is usually more difficult to obtain suitable, multitemporal reference data of greater quality to use as the basis of the accuracy assessment, particularly for historical time frames.
- Commission vs omission: Since the changed classes are often small proportions of landscapes, it is easier to assess errors of commission (by examining small areas identified as changed) than errors of omission (by examining large area identified as unchanged).
- Multidate analysis: Other errors such as geo-location of multitemporal datasets and inconsistencies in processing/analysis and in cartographic/thematic standards are more frequent in change assessments.

Sources of uncertainty	Addressing uncertainties (1/5)
• Quality and suitability of satellite data (i.e., in terms of spatial, spectral, and temporal resolution)	Many of these sources of uncertainty can be addressed using widely accepted data and approaches:
 Radiometric / geometric preprocessing (correct geolocation) 	Satellite data: Landsat-type data, for example, have been proven useful for national-scale land cover changes for MMU of 1 ba
• Cartographic standards (i.e., land category definitions and Minimal Mapping Unit - MMU)	 Preprocessing features: they are provided for most regions by some data providers (i.e., global Landsat
 Interpretation procedure (algorithm or visual interpretation) Postprocessing of the map products (i.e., dealing with postprocessing of the map product	 Geocover) Consistent and transparent mapping: same cartographic and thematic standards and accepted interpretation methods should be applied transparently using expert interpreters.
data, conversions, integration with different data formats)	A robust accuracy assessment of land cover or land-cover change maps & estimates should include three components :
evaluation and fine-tuning of the map	(i) sampling design, (ii) response design, (iii) analysis design 14
Addressing uncertainties: sampling design (2/5)	Addressing uncertainties: response design (3/5)
 Protocol for selecting the locations at which the reference data are obtained: It includes specification of Sample size, 	Reference information should come from data of greater quality than the map labels
• Sample locations,	Ground observations are generally considered the
• Reference assessment units (i.e., pixels or image blocks).	standard, although finer resolution remotely sensed data are also used (e.g., Ikonos, Google Earth, Bing Map, etc.).
Stratified sampling should be used for rare classes (e.g., change categories).	Consistency and compatibility in thematic definitions and interpretation are required to compare reference and
Systematic sampling (with density of reference plots based on stratification) with a random starting point is generally more efficient than simple random sampling and is also more traceable.	map data.

Addressing uncertainties: analysis design (4/5)	Addressing uncertainties: Limitations (5/5)
Comparisons of map and reference data produce a suite of statistical estimates including	■ The techniques rely on probability sampling designs and the availability of reference data → Such approach may not be achievable, in particular for historical land changes.
 <i>error matrices</i>, <i>class-specific accuracies</i> (of commission / omission error), 	If accuracy assessment is not possible , it is recommended to perform, as a minimum, a consistency assessment (i.e., reinterpretation of small samples in an independent manner) which provides information of the quality of the estimates
• area and area-change estimates,	 Other procedures include: review by local experts or comparisons with non-spatial and statistical data
• and associated standard-deviation and confidence intervals.	→ In all cases, any uncertainty bound should be treated conservatively to avoid producing a benefit for the country (overestimation of removals or of emissions reductions) 18
6 ESTIMATION OF UNCERTAINTIES	Uncertainties in EF vs AD
 General concepts Uncertainties in area-change estimates 	Assessing uncertainties of the EFs (estimates of C stocks and C stocks changes) is usually more challenging (and often subjective) than estimating uncertainties of the areas and area changes (AD)
3. Uncertainties in carbon stocks change estimates	According to the literature, the overall uncertainty for EFs is usually larger than the uncertainty for AD.
4. Combination of uncertainties	However, when looking at changes (i.e. trends) in C stocks and areas, the picture may change, depending on possible correlation of errors (see later)
19	50

Uncertainties due to systematic errors (1/2)

2 types : lack of completeness ; lack of representativeness

Completeness of C pools (AGB BGB, SOC, deadwood, litter):

≈15% of emissions may come from deadwood and ≈ 2530% may come from soils (more if organic soils)...These pools are often not included (lack of data)

"*Key categories*" (KC) (sources/sinks of emissions/removals that **contribute substantially** to the overall national inventory or are **key sources of uncertainty** in the overall **trend**) should be **included**.

Within a KC, a pool is "**significant**" if it accounts for **>25-30%** of emissions/removals from the KC

Emissions/removals from **KC** and **significant pools** should be estimated with **Tier 2 or 3** methods

Pools may be omitted under principle of *conservativeness*

25

Uncertainties due to systematic errors (2/2)

Representativeness of sampling plots: significant bias if sample not representative of high variation of biomass content

Sound statistical sampling necessary in "hotspots"

Distribution of samples across major soil/topographic gradients of landscape to allow landscape-scale AGB estimation with $\pm 10\%$ (95% CI)

If geographic position:

- Known → global biomass maps (1km Saatchi / 500m Baccini) can be used for estimating AGB
- Unknown → global biomass maps can be used to derive improved Tier 1 data values

26

Ex: Error propagation of AGB estimation for Central Panama

(Chave et al. 2004)

Table 3. Summary of the sources of error in the AGB estimation of a tropical forest. (Type 1 error refers to the error made in the estimation of the AGB held in a single tree; this error averages out in plots. Type 2 error is that caused by the choice of the allometric model. Types 3 and 4 are two types of sampling error, which can be minimized by large-sized, multi-plot, censues. The reported values are examples for the forests of the Panama Canal watershed.)

error type		s.e.m. (percentage of the mean)	type of data
1. tree level error	trees > 10 cm diameter	48	BCI plot-pan-tropical allometric model
	trees < 10 cm diameter	78	
2. allometric model	before ρ correction	22	BCI plot-eight allometric models
	after ρ correction (gravity)	13	
	after large tree correction	11	BCI plot-pan-tropical allometric model
3. within-plot uncertainty	0.1 ha plot	16	
	0.25 ha plot	10	
	1 ha plot	5	
4. among-plot uncertainty		11	Marena plots-pan-tropical allometric model
total	50 1 ha plots, after ρ and large	24	
	tree corrections		

Ex. Uncertainties of recent AGB global maps (1/2)

Saatchi map at 95% CI:

- Overall AGB uncertainty at pixel-level (averaged) ±30% (±6% to ±53%)
- Regional AGB uncertainties: America ±27%; Africa ±32% Asia ±33%
- Total C stock uncertainty at pixel-level (averaged) ±38%; ±5% (10,000ha); ±1% (>1,000,000ha)

27

6 ESTIMATION OF UNCERTAINTIES

- 1. General concepts
- 2. Uncertainties in area-change estimates
- 3. Uncertainties in carbon stocks change estimates
- **4.** Combination of uncertainties

Combination of uncertainties

2 methods:

- **Error propagation** (IPCC **Tier 1**),
- Easy to implement using a spreadsheet tool;
- Certain conditions have to be fulfilled before use.

→ Monte Carlo simulation (IPCC Tier 2)

- Based on modelling and requiring more resources to be implemented;
- It can be applied to any data or model.

Tier 1 uncertainty level assessment (1/3)

Tier 1 should be used **only when**:

- Estimation of emissions and removals is based on addition, subtraction, and multiplication
- There are no correlations across categories (or categories are aggregated in a way that correlations are unimportant)
- Relative **ranges of uncertainty** in the EFs and AD estimates remain **the same over time**
- No parameter has an uncertainty > ±60%
- Uncertainties are **symmetric** and follow **normal distribution**

Even in the case that **not all of the conditions are fulfilled**, the Tier 1 method can be used to obtain **approximate results**

If **asymmetric** distributions \rightarrow take higher **absolute** values for uncertainties to be combined

Tier 1 uncertainty level assessment (2/3)

$$J_{total} = \sqrt{U_1^2 + U_2^2 + \dots + U_n^2}$$

Equation for **multiplication** Where:

Ui = percentage uncertainty associated with each of the parameters Utotal = the percentage uncertainty in the product of the parameters

$$U_{total} = \frac{\sqrt{(U_1 * x_1)^2 + (U_2 * x_2)^2 ... (U_n * x_n)^2}}{|x_1 + x_2 ... + x_n|}$$

Equation for Where:

addition and U

= percentage uncertainty associated with each of the parameters
 = the value of the parameter

 U_{total} = the percentage uncertainty in the sum of the parameters

33

Tier 1 uncertainty level assessment (3/3)

Examples

Multiplication

	Mean value	Uncertainty (% of the mean)	Thus the total carbon stock loss over the stratum is: 10.827 ha* 148 tC/ha = 1.602.396 t C
Area change (ha)	10827	8	10,027 10 110 00/10 - 1,002,030 00
Carbon stock (t C/ha)	148	15	And the uncertainty = $\sqrt{8^2 + 15^2} = \pm 17\%$

Addition

	Mean t(95 % CI 'C/ha)	therefore the total stock is 138 t C/ha and the uncertainty = $\sqrt{(110(\pm 112)^2 + (20(\pm 10)^2 + (20(\pm 7)^2))^2)}$
Living Trees	113	11	$= \frac{\sqrt{(11\%^{+}113)} + (5\%^{+}18) + (2\%^{+}7)}{10} = \pm 9\%$
Down Dead Wood	18	3	113+18+7
Litter	7	2	The total uncertainty is $\pm 0\%$ of the mean total C stock of 139 t C/

34

Tier 1 uncertainty trend assessment (1/2)

Estimation of trend uncertainty (Tier 1) is based on the use of **two sensitivities**:

- Type A sensitivity, which arises from uncertainties that affect emissions or removals in the years 1 and 2 equally (i.e., the variables are correlated across the years)
- Type B sensitivity, which arises from uncertainties that affect emissions or removals in the year 1 or 2 only (i.e., variables are uncorrelated across the years)

Basic assumptions:

EF fully correlated across the years (Type A sensitivity)

AD uncorrelated across years (Type B sensitivity)

Tier 1 uncertainty trend assessment (2/2)

Table to combine level and trend uncertainties using Tier 1 (see GOFC-GOLDC (2014) *Sourcebook,* section 2.7, for explanation of notes.)

A	В	С	D	E	F	G	Н	I	3	к	L	м
Category	Gas	Emissions or removals in year 1	Emissions or removals in year 2	Area uncertainty	Emission factor uncertainty	Combined uncertainty	Contribution to variance by category in year 2	Type A sensitivity	Type B sensitivity	Uncertainty in trend introduced by emission factor uncertainty (Note ii)	Uncertainty in trend introduced by area uncertainty (Note iii)	Uncertainty introduced to the trend in total emissions/
		Mg CO ₂	Mg CO ₂	%	%	$\sqrt{E^2+F^2}$	$\frac{(G^*D)^2}{(\sum D)^2}$	Note i	$\frac{D}{\sum C}$	<i>I</i> * <i>F</i>	$J^*E^*\sqrt{2}$	$K^2 + L^2$
E.g. Forest converted to Cropland	CO ₂	če			21		5	2	i. ,			
E.g. Forest converted to Grassland	CO ₂	i.e					-					
Etc									s			
Total		$\sum C$	$\sum D$				$\sum H$		G			$\sum M$
	ĺ				Level	uncertainty	$\sqrt{\sum H}$		ii ii	3	Trend uncertainty	$\sqrt{\sum M}$

										1						
Tier 2 uncertainty level assessment: Monte Carlo simulation (1/2)									Mont	e Carlo	Tier 2 uncertainty level assessment: Monte Carlo simulation (2/2)					
 Tier 2 method can be applied to any equation (whereas Tier 1 is applicable only for addition, subtraction, and multiplication). Tier 2 can also be applied to entire models. Tier 2 gives more reliable results than Tier 1, particularly 										hereas d models . ticularly	The principle of Monte Carlo analysis is to select random values of EF, AD, and other estimation parameters from within their individual probability density functions and to calculate the corresponding emission values.					
where uncertainties are large, distributions are non- normal, or correlations exist.									ns are	non-	This procedure is repeated many times (e.g., 5,000 or 10,000), using a computer.					
	Application of statistical	of T soft	ier 2 war	requ e pa	ires (ckag	orog e.	gram	ming (or use	of a	This yields 5,000 or 10,000 values for emission, based on which the user can calculate the mean value of emission					
For more details, see IPCC (2003, ch. 5) guidance and IPCC (2006, vol. 1, ch. 3) guidelines.							ch. 5)	guidan	ce and	IPCC	and its 95% confidence interval.					
										37	38					
	Reporti	ng	of	unce	ertai	nti	es (T	īer 1	or Ti	er 2)	In summary					
	Uncertainties sh GOFC-GOLDC (noul 201	d be 4, se	repo ct. 4)	r ted Sour	with cebc	a sta i bok for	n dardiz explan	zed for ation o	mat . See f notes.	Assessing uncertainty is fundamental in the IPCC and UNFCCC contexts.					
A B C D E F G H I J							G	Н	I	J	Uncertainty consists of two components: systematic errors					
	Category	Gas	Emissions or removals in vear 1	Emissions or removals in vear 2	Area uncertainty Fmission	factor uncertainty	Combined uncertainty	Inventory trend for year 2 increase with respect to year 1 (Note a)	Trend uncertainty of the category	Method used to estimate uncertainty (Note b)	 Accuracy assessment of land cover and changes (AD) is used to characterize the frequency of errors (omission and commission) for each class and the overall accuracy of the map using an independent reference dataset. 					
			Mg CO ₂	Mg CO ₂	% %		%	% of year 1		-29	Assessing uncertainties of the estimates of C stocks and C					

E.g. Forest Land CO2

E.g. Forest Land CO2

to

to

...

Level

uncertain ty Trend

ty

uncertain

converted

Cropland

converted

Grassland Etc

Total

Assessing uncertainties of the estimates of C stocks and C
stocks changes (EFs) is usually more challenging due to
different types of random and systematic errors.

 The uncertainties in individual parameters can be combined using either error propagation (Tier 1) or Monte Carlo analysis (Tier 2).

References

Baccini, A., S.J. Goetz, W. S. Walker, N. T. Laporte, M. Sun, D. Sulla-Menashe, J. Hackler, P.S. A. Beck, R. Dubayah, M. A. Friedl, et al. 2012. "Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps." Nature Climate Change 2: 182-185.

Brown, S. 1997. "Estimating Biomass and Biomass Change of Tropical Forests: A Primer." FAO Forestry Papers 134. Rome, Italy: FAO. http://www.fao.org/icatalog/search/dett.asp?aries id=7736.

Card, D. H. 1982. "Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy." Photogrammetric Engineering and Remote Sensing 48: 431-439.

Chave, J., R. Condit, S. Aguila, A. Hernandez, S. Lao, and R. Perez. 2004. "Error Propagation and Scaling for Tropical Forest Biomass Estimates." Philosophical Transactions of the Royal Society B 359: 409-20.

Chave, J., A. Andalo, S. Brown, M. A. Cairns, J. O. Chambers, D. Eamus, H. Foelster, F. Fromard, N. Higuchi, T. Kira, J-P Lescure, B. W. Nelson H. Ogawa, H. Puig, B. Riera, and T. Yamakura. 2005. "Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests." Oecologia 145: 87-99.

Clark, D. B., and D. A. Clark, 2000, "Landscape-scale Variation in Forest Structure and Biomass in a Tropical Rain Forest." Forest Ecology Management 137: 185-198.

Feldpausch, T. R., J. Lloyd, S. L. Lewis, R. J. W. Brienen, M. Gloor, A. Monteagudo Mendoza, G. Lopez-Gonzalez, L. Banin, K. Abu Salim, K. Affum-Baffoe, et al. 2012. "Tree Height Integrated into Pantropical Forest Biomass Estimates." Biogeosciences 9: 3381-3403. 41

56

Freibauer, A. 2007. "Soil Carbon Losses by Deforestation in the Tropics." PowerPoint presentation. https://seors.unfccc.int/seors/attachments/get_attachment?code=L1NPQ1Y0F267LFN008Y2F43H78MJW8ZA.

Fuller, R. M., G. M. Smith, and B. J. Devereux, 2003, "The Characterization and Measurement of Land Cover Change through Remote Sensing: Problems in Operational Applications?" International Journal of Applied Earth Observation and Geoinformation, 4: 243-253.

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.php.

Grassi, G., S. Monni, S. Federici, F. Achard, and D. Mollicone. 2008. "Applying the Conservativeness Principle to REDD to Deal with the Uncertainties of the Estimates." Environmental Research Letters 3 (3).

Grassi, G., S. Federici, and F. Achard. 2013. "Implementing Conservativeness in REDD+ Is Realistic and Useful to Address the Most Uncertain Estimates." Climatic Change 119: 269-275. http://link.springer.com/article/10.1007%2Fs10584-013-0780-x.

42

Houghton, R. A. 2005. "Aboveground Forest Biomass and the Global Carbon Balance." Global Change Biology 11: 945-58.

Houghton, R. A., et al. 2001. "The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates." Global Change Biology 7: 731-46.

IPCC, 2003. 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme, Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.). Published: IGES, Japan. http://www.ipccnggip.iges.or.jp/public/gpglulucf/gpglulucf.html (Often referred to as IPCC GPG)

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. http://www.ipccnggip.iges.or.jp/public/2006gl/vol4.html (Often referred to as IPCC AFOLU GL)

Keller, M., M. Palace, and G. Hurtt. 2001. "Biomass Estimation in the Tapajos National Forest, Brazil; Examination of Sampling and Allometric Uncertainties." Forest Ecology Management 154: 371-382.

Langner, A., F. Achard, G. Grassi, and M. Bucki. "Can Recent Pan-Tropical Biomass Maps Be Used as Improved Tier 1 Level Emission Factors for Reporting for REDD+ Activities under the UNFCCC?" In preparation.

Lehtonen, A., E. Cienciala, F. Tatarinov, and R. Makipaa. 2007. "Uncertainty Estimation of Biomass Expansion Factors for Norway Spruce in the Czech Republic." Annals of Forest Science 64: 133-140

Lowell, K. 2001. "An Area-Based Accuracy Assessment Methodology for Digital Change Maps." International Journal of Remote Sensing 22: 3571-3596.

McRoberts, R. E. 2014. Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sens Environ. doi: 10.1016/j.rse.2013.03.036.

McRoberts, R E., W. B. Cohen, E. Næsset, S. V. Stehman, and E. Tomppo. 2010. "Using Remotely Sensed Data to Construct and Assess Forest Attribute Maps and Related Spatial Products." Scandinavian Journal of Forest Research 25 (4): 340-367.

McRoberts, R. E., and B. F. Walters. 2012. "Statistical Inference for Remote Sensing-Based Estimates of Net Deforestation." Remote Sensing of Environment 124: 394-401.

Mitchard, E. T. A., S. S. Saatchi, A. Baccini, G. P. Asner, S. J. Goetz, N. L. Harris, and S. Brown. 2013. "Uncertainty in the Spatial Distribution of Tropical Forest Biomass: A Comparison of Pan-Tropical Maps." Carbon Balance and Management 8: 10.

Olofsson, P., G. M. Foody, S. V. Stehman, and C. E. Woodcock. 2013. "Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation." Remote Sensing Environment 129: 122-31.

Pelletier, J., N. Ramankutty, C. Potvin. 2011. "Diagnosing the Uncertainty and Detectability of Emission Reductions for REDD+ Under Current Capabilities: An Example for Panama." Environmental Research Letters 6: 024005.

Pelletier, J., K. R. Kirby, and C. Potvin. 2012. "Significance of Carbon Stock Uncertainties on Emission Reductions from Deforestation and Forest Degradation in Developing Countries." Forest Policy and Economics 24: 3-11.

Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. Salas, B. R. Zutta, W. Buermann, S. L. Lewis,

S. Hagen et al. 2011. "Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents." *Proceedings of the National Academies of Science* 108: 9899–9904.

Sannier, C., McRoberts, R.E., Fichet, L.-V., & Makaga, E. (2014). Application of the regression estimator to estimate Gabon forest cover area and net deforestation at national level. Remote Sensing of Environment doi:10.1016/j.rse.2013.09.015.

Sierra, C. A., et al. 2007. "Total Carbon Stocks in a Tropical Forest Landscape of the Porce Region, Colombia." Forest Ecology Management 243: 299–309.

Stehman, S.V. (2009). Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing. Remote Sensing of Environment 113 : 2445-2462

Stehman, S. V., T.L. Sohl, and T. R. Loveland. 2003. "Statistical Sampling to Characterize Recent United States Land-Cover Change." *Remote Sensing of Environment* 86: 517–529.

Strahler, A., L. Boschetti, G. M. Foody, al. 2006. *Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment Of Global Land Cover Maps—Report of Committee of Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV)*. Luxembourg: European Communities.

Van Oort, P. A. J. 2007. "Interpreting the Change Detection Error Matrix." Remote Sensing of Environment 108: 1–8.

Wulder, M., S. E. Franklin, J. C. White, J. Linke, and S. Magnussen. 2006. "An Accuracy Assessment Framework for Large Area Land-Cover Classification Products Derived from Medium Resolution Satellite Data." International Journal of Remote Sensing 27: 663–683.

7 REPORTING OF GHG

Reporting LULUCF performance using IPCC 2003 GPG-LULUCF and 2006 **AFOLU GL**

After the course the participants should be able to:

- Understand the general reporting and review principles
- Perform reporting of GHG emissions using the existing IPCC reporting tables
- Implement the conservative approach to address potential overestimation of achieved mitigation

AFOLU Agriculture, Forestry and Other Land Use GHG Greenhouse Gas IPCC Intergovernmental Panel on Climate Change LULUCF Land Use, Land Use Change, and Forestry

7 REPORTING OF GHG

1. UNFCCC reporting requirements

- 2. Reporting REDD+ performance under the UNFCCC
- 3. Reporting principles under the UNFCCC
- 4. Structure of a GHG inventory

2

Reporting vs accounting?

Reporting: Information on anthropogenic GHG emissions and removals, and on mitigation actions. Information are included in a GHG inventory, composed of estimates in Common Reporting Format (CRF) tables and information on methods in a National **Inventory Report (NIR)**

Accounting: Use of the reporting to assess a Party's performance as compared to its **binding commitment** (e.g., under **Kyoto** Protocol (KP) for Annex 1 Parties) or voluntary commitment (e.q., FR(E)L in the context of **REDD+** for **Non-Annex 1 Parties**)

→ Reporting is the **basis for accounting**, leading to **possible** payments for REDD+ results for Non-Annex 1 Parties.

Requirements: Annex 1 vs Non-Annex 1

- Annex T:
 - National Communications (NC, every 4yrs),
 - GHG Inventories (GHGI, annual),
 - Biennial Reports (BRs, every 2yrs),
 - all subject to review
 - + Forest Management Reference Level (FMRL, under Art. 3.4 / KP)

Non-Annex I:

- National Communications (NC, every 4 yrs),
- Biennial Update Reports (BURs, every 2yrs)

NB: LDCs (e.g. Sudan) and SIDS may submit NC and BUR at their discretion.

+ Forest Reference (Emissions) Level (FR(E)L, for REDD+)

Guidelines on requirements are **detailed** for Annex I (especially for GHGI), but are more **generic** for non-Annex I parties.

LDCs: Least Developed Countries SIDS: Small Island Developing States

58

3

NCs and BURs for Non-Annex 1

NC:

Include information on <u>national circumstances</u>, the <u>national GHGI</u>, and information on <u>strategies for mitigation</u>.

Submitted every **4 years**, following adopted guidelines in Decision 17/CP.8 and IPCC methodologies (at least IPCC 1996 GL. More recent GL welcome !)

Sudan: 1NC submitted in 2003, 2NC submitted in 2013

BURs:

Include updated information on national circumstances, the <u>national</u> <u>GHGI</u>, and information on <u>mitigation actions</u>, i.e. Nationally Appropriate Mitigation Actions (NAMAs) and REDD+.

Submitted every **2 years** (starting Dec 2014), following adopted guidelines in Decision 2/CP.17 and IPCC methodologies (including **2003 GPG for LULUCF**)

BURs are subject to a **technical assessment** as part of the International Consultation and Analysis (**ICA**) process

Sudan: BUR not yet submitted

2NC (2013) of Sudan

5

REPUBLIC OF THE SUDAN Ministry of Environment, Forestry & Physical Development Higher Council for Environment and Natural Resources

Sudan's Second National Communication under the United Nations Framework Convention on Climate Change

Main COP Decisions relevant to UNFCCC reporting

	Decision/Document	Description
	Convention Text (UNFCCC)	It sets specific commitments for Parties to periodically and continually report information on their GHG emissions and removals and on mitigation actions implemented
3/CP.5	Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications	It establishes the structure of the NC; the information to be provided in the NC; the principles and methodologies to be applied to compile information and elaborate estimates
15/CP.17	Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories	It establishes the structure of the GHGI; the information to be provided in the GHGI; the principles; and methodologies to be applied to compile information and elaborate estimates
24/CP.19	Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention	It will replace the version provided in Decision 15/CP.17
2/CP.17	UNFCCC biennial reporting guidelines for developed country Parties	It establishes the information to be provided in the BR (noting that principles and methodologies to be applied to compile information and elaborate estimates are those applied for NC and GHGI)
17/CP.8	Guidelines for the preparation of national communications from Parties not included in Annex I to the Convention	It establishes the structure of the GHGI; the information to be provided in the GHGI; the principles and methodologies to be applied to compile information and elaborate estimates.
2/CP.17	UNFCCC biennial update reporting guidelines for Parties not included in Annex I to the Convention	It establishes the information to be provided in the BUR (noting that principles and methodologies to be applied to compile information and elaborate estimates are those applied for NC and GHGI)
12/CP.17	Guidance on systems for providing information on how safeguards are addressed and respected and modalities relating to forest reference emission levels and forest reference levels as referred to in decision 1/CP.16	It provides guidance on information to be submitted on how safeguards have been addressed and respected
13/CP.19	Guidelines for technical assessment of submissions of information on reference levels	It provides guidance on information to be submitted on how the reference levels have been constructed
14/CP.19	Modalities for measuring, reporting and verifying	It provides guidance on information to be submitted on how the results of activities have been estimated

Main IPCC Guidelines relevant to UNFCCC reporting

Decision/Document	Description
2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol (KP Supplement) (adopted by decision 6/CMP.9)	It provides good practices to be followed, in addition to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in order to ensure accuracy of estimates of KP-LULUCF activities
2013 Supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement) (adopted by decision 23/CP.19)	It provides supplementary methods, to those provided in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, for collecting and compiling information and for preparing GHG estimates for wetlands and drained soils
2006 IPCC Guidelines for National Greenhouse Gas Inventories (adopted by decision 15/CP.17)	It provides methods for collecting and compiling information and for preparing GHG estimates, which are consistent with the reporting principles (transparency, completeness, consistency, accuracy and therefore, comparability). This represents the most recent guidelines for national GHG inventories published by IPCC
2003 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (adopted by decisions 2/CP.17, 17/CP.18)	It provides good practices to be followed, in addition to the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, in order to ensure accuracy of LULUCF estimates
2000 IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (adopted by decisions 2/CP.17, 17/CP.18)	It provides good practices to be followed, in addition to the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, in order to ensure accuracy of estimates
Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (adopted by decisions 2/CP.17, 17/CP.18)	It provides methods for collecting and compiling information and for preparing GHG estimates, which are consistent with the reporting principles

7 REPORTING OF GHG	REDD+ requirements for reporting (1/2)						
1. UNFCCC reporting requirements 2. Reporting REDD+ performance under the UNFCCC	 Need to follow Decision 14/CP.19 on "Modalities for MRV of anthropogenic forest-related GHG emissions by sources and removals by sinks", consistent with Decision 4/CP.15 on "Modalities for MRV of NAMAs" Results, against the FR(E)L, should be in tCO_{2eq}/year 						
3. Reporting principles under the UNFCCC	Data and methodologies should be improved over time						
4. Structure of a GHG inventory	Data and methodologies should be transparent, consistent over time, and consistent with the FR(E)L						
	To claim for result-based payments, information should be submitted in a technical annex to the BUR, following agreed guidelines from Decisions 4/CP.15 and 12/CP.17						
9	MRV: Measuring, Reporting and Verifying 10 NAMAs: Nationally Appropriate Mitigation Actions						
REDD+ requirements for reporting (2/2)	Reporting Guidance from the FCPF Carbon Fund						
REDD+ Technical Annex to the BUR to be verified by 2	Methodological Framework						
experts (one from a developing country; one from a	Methodological steps Maps and/or synthesized data						

11

developed country), following the <u>5 IPCC principles</u>: transparency, consistency, comparability, completeness, and accuracy.

Interactions possible between the experts and the Party, to provide clarifications and additional information

A technical report is published on the UNFCCC web platform (<u>https://redd.unfccc.int/</u>): Technical annex + Analysis of the annex + Recommendations for technical improvement + comments and/or responses by the Party

	Methodological steps	Maps and/or synthesized data					
	Forest definition	Accounting area					
	Definition of forest classes	Activity data					
	Choice of Activity Data and (pre-)processing methods	Emission factors					
	Choice of emission factors and description of their development	Average annual emissions over the Reference Period					
	Estimation of emissions and removals, including accounting approach	Adjusted FR(E)L					
	Disaggregation of emissions by Sources and removals by Sinks	Any spatial data used to adjust FR(E)L					
	Estimation of accuracy, precision, and/or confidence level						
	Discussion of key uncertainties	Source: World Bank ECPE 2013.					
~	Rationale for adjusting FR(E)L						
υ	Methods and assumptions associated with adjusting FR(E)L	FCPF : Forest Carbon Partnership Facility					

7 REPORTING OF GHG	Transparency
1. UNFCCC reporting requirements	All the assumptions and the methodologies used in the GHGI should be clearly explained and documented
 Reporting REDD+ performance under the UNFCCC Reporting principles under the UNFCCC Structure of a GHG inventory 	 GHG estimates are reported in CRF tables at a level of disaggregation which allows verifying calculations Most relevant background data are provided in the
	 NIR Anybody could verify the correctness of the GHGI
13	CRF: Common Reporting Format 14 NIR: National Inventory Report
Consistency	Comparability
 The same definitions and methodologies should be used over time This should ensure that differences between years reflect real differences in emissions Under certain circumstances, estimates using different methodologies for different years can be considered consistent if calculations are transparent Recalculations (retropolations) of previously submitted estimates are possible to improve accuracy and/or completeness, providing calculations are transparent and properly documented 	 To insure comparability across countries, Parties should follow the methodologies provided by the IPCC and agreed within the UNFCCC NB: Comparability is not explicitly mentioned in REDD+ related COP decisionsHowever, as long as estimates are transparent, consistent, complete and accurate, and follow IPCC guidance, they can be considered methodologically comparable
15	16

Completeness	Accuracy
 Estimates should include all the significant categories, gases, and pools When gaps exist, all the relevant information and justification on these gaps should be documented in a transparent manner 	 Estimates should not be systematically either over or under the true value, so far as can be judged, and uncertainties should be reduced so far as is practicable Appropriate methodologies should be used, in accordance with the IPCC, to promote accuracy in inventories and to quantify the uncertainties in order to improve future inventories
17	18
7 REPORTING OF GHG	Structure of a GHG inventory (GHGI)
 UNFCCC reporting requirements Reporting REDD+ performance under the UNFCCC Reporting principles under the UNFCCC Structure of a GHG inventory 	 A national GHGI of anthropogenic emissions and removals is typically divided into two parts: Common Reporting Format (CRF) tables: A series of standardized data tables that contain mainly quantitative information (i.e., numerical estimates of emissions and removals) National Inventory Report (NIR): Comprehensive and transparent (qualitative and quantitative) information about how estimates have been
19	62

Key elements in the CRF tables

- Initial and final land-use category: Additional stratification (subcategories) is encouraged according to criteria such as climate zone, soil type, vegetation type, ecological zones, etc.
- AD Activity Data: area of land (in ha) subject to deforestation, afforestation, etc. or volume of harvest (in m³) subject to forest degradation, etc.
- EFs Emission Factors: C stock changes or GHG fluxes (CH4, N2O) per unit area or per unit volume, separated for each carbon pool
- Total change in C stock and GHG fluxes: AD x EF
- Total GHG emissions/removals (expressed as CO_{2eq})

21

63

Ex of CRF table

Ex. of a CRF table to report emissions from deforestation

GREENHOUSE GAS SOURCE AND SINK CATEGORIES		ACTIVITY DATA	IMPLIED CARBON STOCK CHANGE FACTORS ⁽²⁾ Net carbon stock change per					sion/ ber area	CHANGE IN CARBON STOCK (3)					
			biom	rea ir deac ma	a in: dead org. matter		d emis actor p	Biomass		Dea	Dead org. matter		2 emiss ovals ⁽	
Land-Use Category	Sub- division	Total area (kha)	above- ground	below- ground	dead lwood	llitter	soils	Implie removal f	above- ground	below groun	- dea d woo	d d litte	soils	Net CC rem
			(Mg C/ha)				(Mg CO ₂ /ha)	(Gg C)				(Gg CO₂)		
A. Total Deforestation														
1. Forest Land	(specify)													
converted to Cropland	(specify)													
2. Forest Land	(specify)													
converted to Grassland	(specify)													
(1) Land categories may be further divided according to climate zone, management system, soil type, vegetation :ype, tree species, ecological zones, national land classification or other criteria. (2) The signs for estimates of increases in C stocks are positive (+) and of decreases in C stocks are pegative (-)														

(2) The signs for estimates of increases in C stocks are positive (+) and of decreases in C stocks are negative (-). (3) According to IPCC, changes in C stocks are converted to CO2 by multiplying C by 44/12 and changing the sign for net CO2 removals to be negative (-) and for net CO2 emissions to be positive (+).

Notation keys for CRF tables

To ensure **completeness**, it is *good practice* **to fill all cells** of the table.

If emissions/removals **have not been estimated or cannot be reported**, the following qualitative "notation keys" should be used:

Notation key	Explanation
NE (not estimated)	Emissions / removals occur but have not been estimated or reported.
IE (included elsewhere)	Emissions / removals for this activity or category are estimated but included elsewhere (indicate where).
C (confidential information)	Emissions / removals are aggregated and included elsewhere in the inventory because reporting at a disaggregated level could lead to the disclosure of confidential information.
NA (not applicable)	The activity or category exists but relevant emissions and removals are considered never to occur.
NO (not occurring)	An activity or process does not exist within a country.

Additional CRF tables

In addition to tables like the one in the example, other typical tables include:

- Tables with emissions of other gases (e.g., CH₄ and N₂O from biomass burning)
- Summary tables (with all gases and emissions/removals)
- Tables with emission trends (covering data also from previous inventory years)
- Tables for illustrating the results of the key category analysis
- Tables for explaining recalculations

National Inventory report (NIR) (1/2) An inventory report typically includes: • Overview of trends by gas and by category Description of the methodologies used, the assumptions, and archiving of data the data sources, and rationale for their selection In the context of REDD+ reporting, specific information on planning, preparation, and management land-use definitions, land-area representation, land-use databases, and datasets on C stock gains and losses Information on planned improvements A description of the **key categories***, including information on the level of disaggregation of the key category analysis

* Key categories": sources/sinks of emissions/removals that contribute substantially to the overall national inventory or are key sources of uncertainty in the overall trend (see IPCC 2003 GPG LULUCF, Ch. 5.4)

LULUCF Reporting challenges for non-Annex 1 Parties

- Transparency, consistency, and comparability: Achievable by most countries (after adequate capacity building if needed)
- Completeness: From official reports (NC, FAO FRA) only a few countries currently report data on **soil carbon**, although these emissions following deforestation are likely to be "significant"
- Accuracy: According to IPCC, key categories and significant pools should be estimated with higher tiers (2) **or 3)**, i.e., country-specific data stratified by climate, forest, soil, and conversion type at a fine/medium spatial scale \rightarrow big challenge

In summary

- Non-Annex I countries should report to the UNFCCC through National Communications (NCs) and Biennial Update Reports (BURs) which include a national GHG **Inventories (GHGI)**
- The GHGI is made of Common Reporting Format (CRF) tables and a National Inventory Report (NIR)
- For claiming REDD+ result-based payments, a technical annex should be prepared and attached to the BUR
- 5 IPCC principles guide the estimation and the reporting of GHGI under the UNFCCC, as well as the process of review or technical assessment of estimates: **Transparency**, Consistency, Comparability, Completeness, and Accuracy

64

26

National Inventory report (NIR) (2/2)

An inventory report typically includes (continued):

- Information on uncertainties (i.e., methods used and underlying assumptions), **time-series consistency**, recalculations/retropolation (justification for providing new estimates), QA/QC procedures, including verification.
- Description of the institutional arrangements for inventory

Furthermore, all of the relevant inventory information should be **archived**, to allow **reconstruction** of the inventory

References

IPCC (Intergovernmental Panel on Climate Change). 1996. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland: IPCC. http://www.ipcc-nggip.iges.or.jp/public/gl/invs4.html.

IPCC (Intergovernmental Panel on Climate Change). 2000. *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories*. (Often IPCC GPG.) Geneva, Switzerland: IPCC. http://www.ipcc-nggip.iges.or.jp/public/gp/english/.

IPCC, 2003. 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme, Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html</u> (Often referred to as IPCC GPG)

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html</u> (Often referred to as IPCC AFOLU GL)

GFOI (Global Forest Observations Initiative). 2014. Integrating Remote-sensing and Ground-based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative. (Often GFOI MGD.) Geneva, Switzerland: Group on Earth Observations, version 1.0. http://www.gfoi.org/methods-guidance/. Sect. 5. <u>http://www.afoi.org/methods-guidance-documentation</u>.

GOFC-GOLD (Global Observation of Forest Cover and Land Dynamics). 2014. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. (Often GOFC-GOLD Sourcebook.) Netherland: GOFC-GOLD Land Cover Project Office, Wageningen University. http://www.gofcgold.wur.nl/redd/index.php.

Grassi, G., S. Monni, S. Federici, F. Achard, and D. Mollicone. 2008. "Applying the Conservativeness Principle to REDD to Deal with the Uncertainties of the Estimates." *Environmental Research Letters* 3 (3).

Grassi, G., S. Federici, and F. Achard. 2013. "Implementing Conservativeness in REDD+ Is Realistic and Useful to Address the Most Uncertain Estimates." *Climatic Change* 119: 269–275. 29 http://link.springer.com/article/10.1007%2Fs10584-013-0780-x. Romijn, E., M. Herold, L. Kooistra, B. Murdiyarso, and L. Verchot. 2012. "Assessing Capacities of Non-Annex I Countries for National Forest Monitoring in the Context of REDD+." Environmental Science & Policy 19–20: 33–48.

UNFCCC, 2005. "Background documentation on the conservativeness factors for the completion of the technical guidance on adjustments." Working Paper No.2.

http://unfccc.int/files/national reports/accounting reporting and review under the kyoto protocol/application/pd f/cf wp sb22 for web final 2may.pdf

UNFCCC COP (United Nations Framework Convention on Climate Change Conference of the Parties) Decisions. This module refers to and draws from various UNFCCC COP decisions. Specific decisions for this module are listed in the "Background Material" slides. All COP decisions can be found from the UNFCCC webpage "Search Decisions of the COP and CMP." <u>http://unfccc.int/documentation/decisions/items/3597.php#bea</u>.

UNFCCC. 2003. Decision 17/CP.8. Guidelines for the preparation of national communications from Parties not included in Annex I to the Convention. http://unfccc.int/resource/docs/cop8/07a02.pdf

UNFCCC. 2009. Decision 4/CP.15. Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries. http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf#page=11

UNFCCC. 2010. Decision 1/CP.16. The Cancun Agreements. http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2

UNFCCC. 2011. Decision 12/CP.17. Guidance on systems for providing information on how safeguards are addressed and respected and modalities relating to forest reference emission levels and forest reference levels as referred to in Decision 1/CP.16. http://unfccc.int/resource/docs/2011/cop17/eng/09a02.pdf#page=16

UNFCCC. 2013. Decision 13/CP.19. Guidelines and procedures for the technical assessment of submissions from Parties on proposed forest reference emission levels and/or forest reference levels. http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf

UNFCCC. 2013. Decision 14/CP.19 Modalities for measuring, reporting and verifying. http://unfccc.int/resource/docs/2013/cop19/eng/10a01.pdf#page=39 World Bank FCPF. 2013. *Carbon Fund Methodological Framework, Final*. Washington, DC: World Bank. https://www.forestcarbonpartnership.org/carbon-fund-methodological-framework.

World Bank FCPF. 2013. *Carbon Fund Methodological Framework. Final.* https://www.forestcarbonpartnership.org/carbon-fund-methodological-framework

April 2019

SalvaTerra SAS 6 rue de Panama 75018 Paris | France Phone: +33 666 499 532 Email: info@salvaterra.fr Web: www.salvaterra.fr Video: www.salvaterra.fr/fr/video

